
Dementia in Australia

Findings from the Australian Institute of Health and Welfare report on Dementia in Australia (2024) :

- In 2023, it is estimated that 411,100 Australians are living with dementia
- Dementia was the 2nd leading cause of death in Australia in 2022
- Around 2 in 3 Australians with dementia were living in the community in 2022
- \$3.7 billion of Australia's health and aged care expenditure was spent directly on dementia in 2020–21

Leading 10 causes of disease burden (DALY) among First Nations people, by sex and age, in 2018

Notes

1. DALY represents the total burden and is the sum of all disability-adjusted life years.

2. COPD refers to chronic obstructive pulmonary disease.

3. Lower respiratory infections include influenza and pneumonia.

4. Conditions which were not grouped into residual categories in the Australian Burden of Disease Study 2018 (such as 'Other musculoskeletal conditions') are not included in the rankings.

musculoskeletal conditions") are not included in the ranking

Source: AIHW Australian Burden of Disease Study 2018.

https://www.aihw.gov.au

Development of the Aβ Theory of the Etiology of Alzheimer's Disease

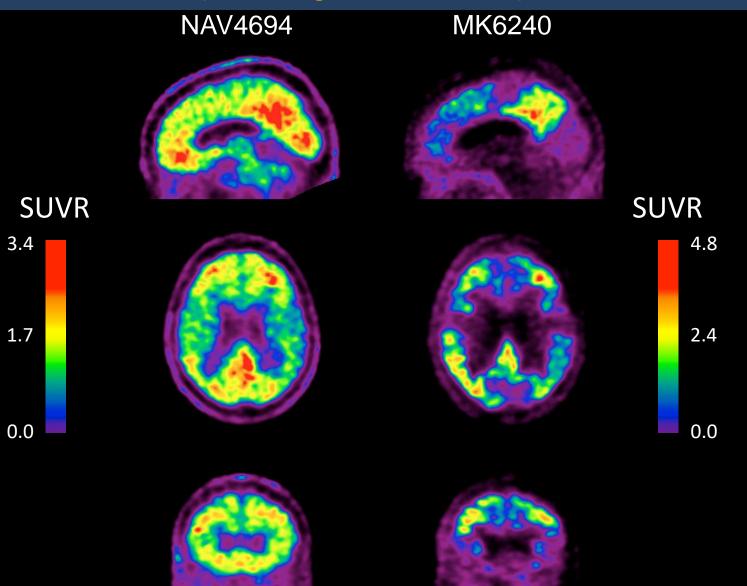
- Step 1. Identification of Aβ-amyloid and its biochemical and molecular genetic characterization which elucidated its neuronal origin and its definition as a diagnostic and therapeutic target.
- Step 2. Genetic linkages of A β /APP and adaptive/innate immune involvement confirm the role of A β /APP in the etiology of AD.
- Step 3. The normal function of APP provides an explanation for where AD starts.
- Step 4. Improved techniques for Aβ detection by molecular imaging and biofluid assay allows depiction of when AD starts during its natural history of preclinical, prodromal and clinical stages.
- Step 5. Imbalances between production and clearance provide explanations for why AD occurs.
- Step 6. Immunotherapy to promote Aβ clearance provides a strategy for how to treat and prevent AD.
- Step 7. A unified and coherent theory of Aβ the etiology of AD is formulated.

Two main types of Alzheimer's disease (but phenotypic varients exist)

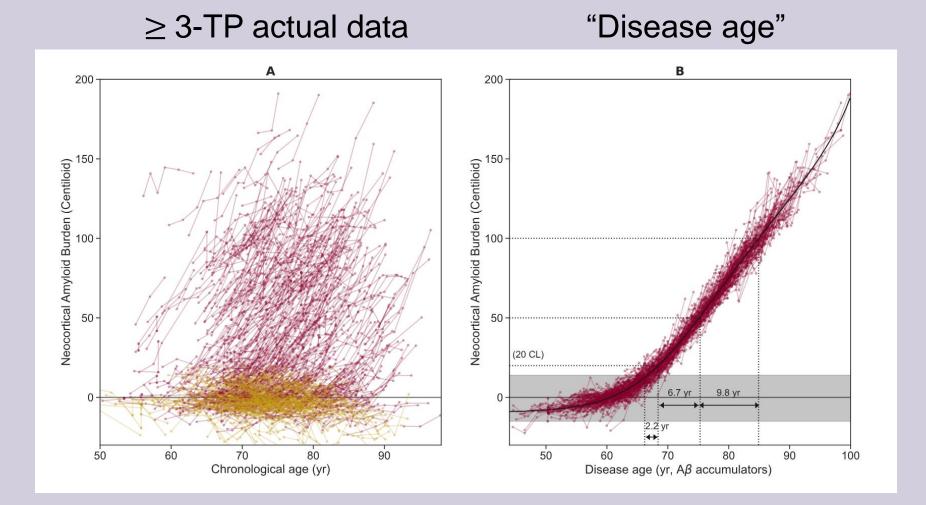
Autosomal Dominant AD (ADAD) and Down's Syndrome (DS);

(Early Onset):

Over-production of A_β

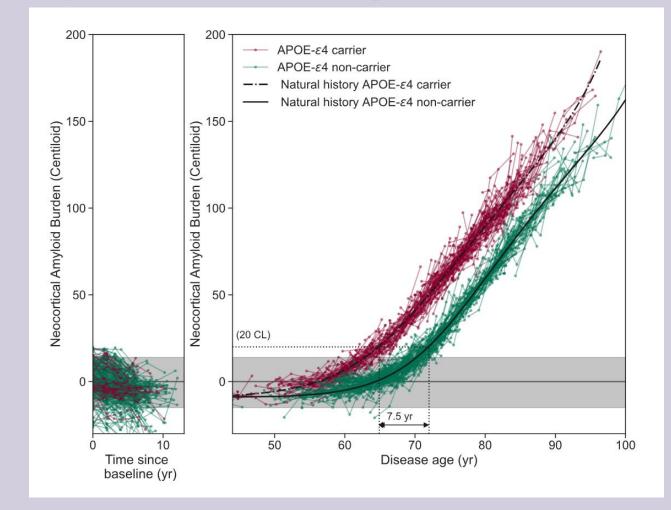

Mean age symptomatic onset: 46y (ADAD); 52y (DS) Pathogenic mutations in APP/PSEN1,2 (ADAD); triplications APP (DS) 18% increased production of $[A\beta_{42}]_{CSF}$ Aβ-PET accumulation rates same as sporadic AD

Sporadic (Late Onset):


Failure of $A\beta$ clearance

Mean age dementia onset: 78y ($\epsilon_4^{+/+}$ 68y, $\epsilon_4^{+/-}$ 76y, $\epsilon_4^{-/-}$ 86y) [Aβ]_{CSF}: turnover 19h (13h control): 49% slower than control T_{1/2} 9.4 h (3.8 h young control) Aβ-PET: accumulation CL 4 %/y; (28 ng/hr, 5% of production rate)

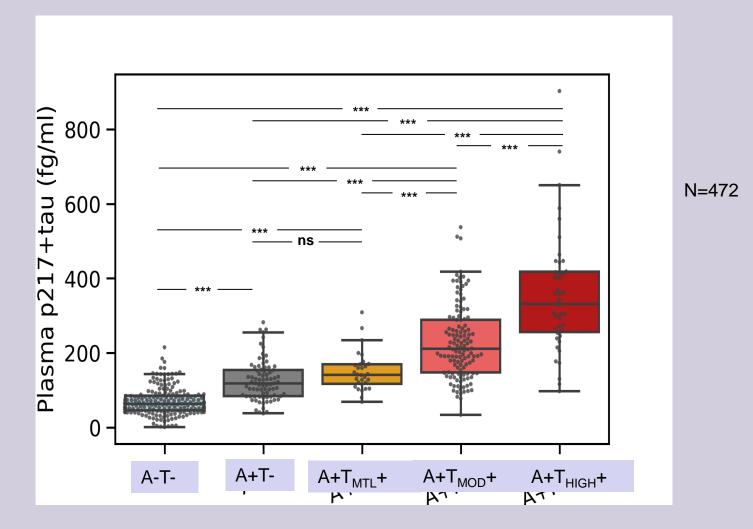
Second generation Aβ and Tau Imaging in AD (¹⁸F) (Villemagne and Rowe)



When does Alzheimer's disease start? Aβ-PET [n=1088, ADOPIC (ADNI, AIBL, OASIS)]

Non-accumulators Intercept point (0CL) 61 y; Accumulators Inflection point (13 CL) 66 y; Threshold (20 CL) 68 y

When does Alzheimer's disease start? Aβ-PET stratified by APOE ε4 status



Intersection points:	E4+ 55 y,	E4 ⁻ 63 y;
Inflection points:	62 y,	70 y;
Thresholds:	65 y,	73 y.

ADOPIC of ages at onset (years): Aβ-PET

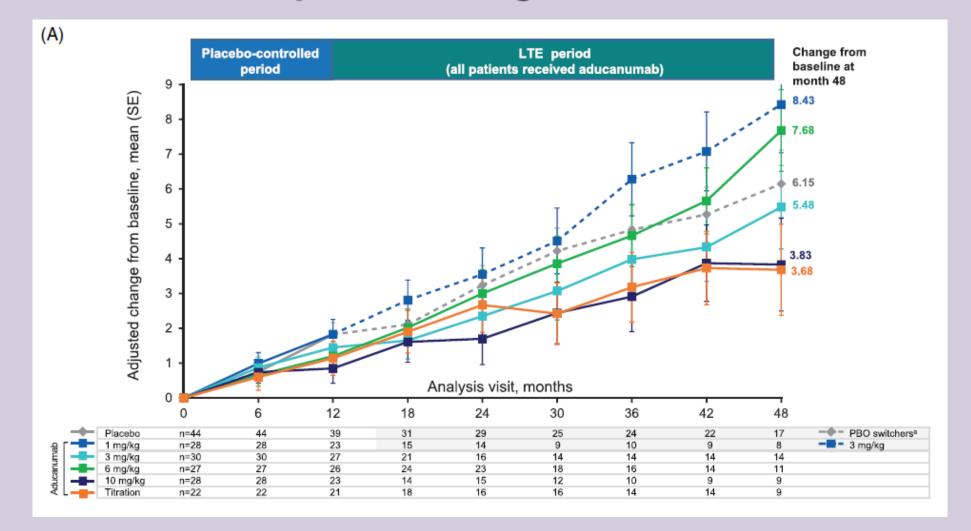
	Disease Age at Intersection point	Disease Age at Inflection Point	Disease Age at 20CL (threshold)	Range of estimated onsets
Whole cohort	60.6±0.9	66,2±1.1	68·4±0·9	61 to 68
APOE e4 carriers	54.8±1.7	62.1±0.8	64·9±1·9	55 to 65
APOE e4 non- carriers	63.0±3.4	70.1±1.6	72·4±1·9	63 to 72

Plasma p-tau217+ stratified by Tau-PET status



Feizpour, Rowe et al., 2023

Aβ passive immunization: how to inhibit primary and secondary nucleation and promote clearance

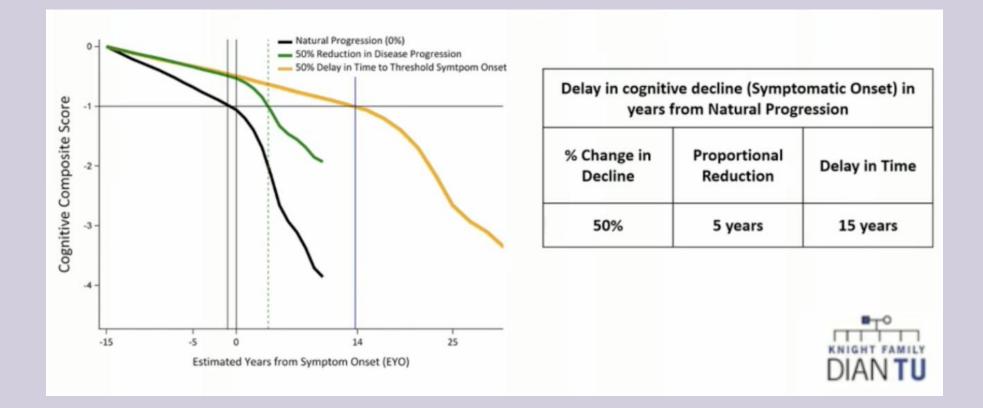

- Aducanumab (Aduhelm, Biogen) >70%
- Gantenerumab (Roche) >70%
- Trontinemab Brain-shuttle (Roche) Gante follow-on
- Lecanemab (Leqembi, Eisai/Biogen) >80%
- Donanemab (Lilly) >85%
- Remternetug (Lilly) >100% in 12 weeks
- Bapineuzumab (J&J/Pfizer/Janssen) 12-25%
- Solanezumab (Lilly) 12%
- Crenezumab (Roche/Genentech/AC Immune)

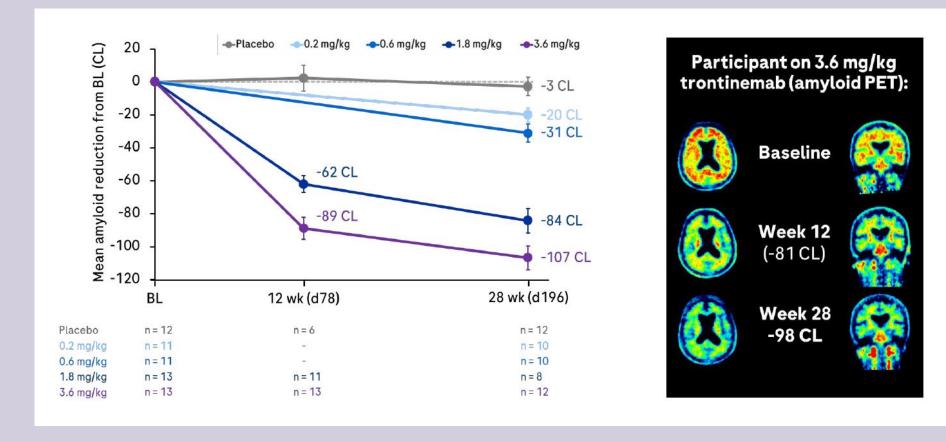
Aβ amyloid reduction with aducanumab: example florbetapir PET images at baseline and week 54

Sevigny et al, Nature, September 2016

Effect of aducanumab on clinical endpoints through 48 months

(Chen et al.)

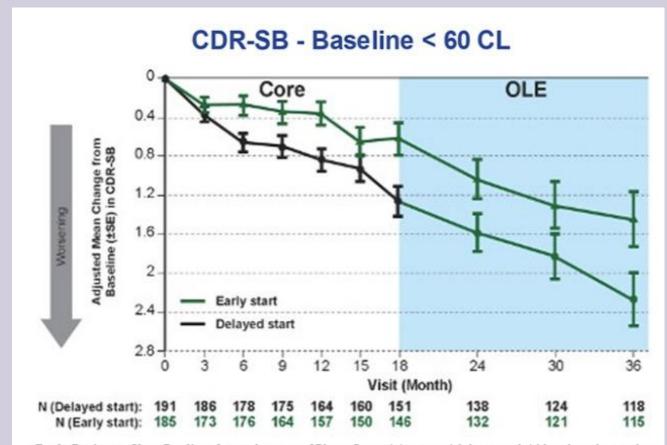

First disease modifying drug for Alzheimer's disease (June 7, 2021)


Gantenerumab (Roche):

- 60 CL reduction in PET-A β signals at 104 weeks, falling below lower threshold to 18CL
- Directional trend for slower clinical decline with higher reduction in PET signal
- Binds "aggregated" A β and to growth ends of fibrils
- Strong signals from DIAN-TU trial at highest doses: Aβ-PET/CSF, tau/p-tau and NfL CSF
- High levels of ARIA-E/H at highest doses
- Brain-shuttle follow up (Trontinemab)
- 50% reduction in hazard ratio for conversion from preclinical to prodromal/clinical ADAD after 8 years on treatment; those with symptoms delayed by 6 years from EYO

Model of cognitive decline and treatment effects to delay onset of symptoms from Alzheimer's disease by 5 to 15 years

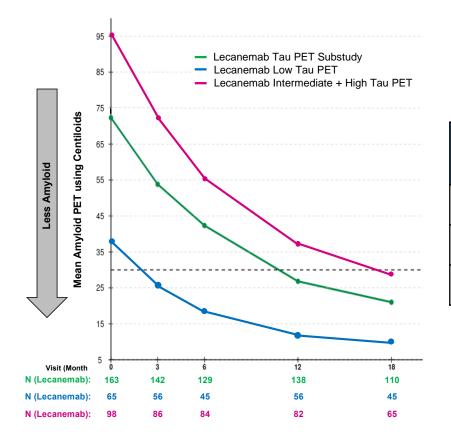
Trontinemab: Rapid and robust amyloid plaque depletion after 28 weeks of treatment



(Kulic, 2024)

Lecanemab (Leqembi; Eisai/BioArctic/Biogen)

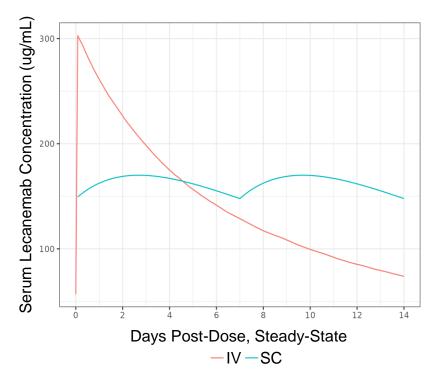
- Phase 3 CLARITY study (n=1,795) (December, 2022)
- Reduces Aβ-PET 80%; 80% negative after 12 months
- Extent of Aβ-PET reduction correlates with degree of slowing in cognitive decline, 27% overall and 40% in E4⁻ subjects (6 months delay); Quality of life 50% slowing
- CSF and plasma biomarkers improved
- ARIA-E 22%, symptomatic 3% (E4- 7%, E4+ 12%, E4++ 35%);
- ARIA-H: macrohemorrhage (2.6% on, and 0.4% off anticoagulants)
- FDA full approval July, 2023; CMS will pay
- AUR: no anticoags, clotting disorders, strokes, seizures
- Low tau-PET subgroup show improving CDR-SB


Lecanemab: 14 months gained in early/low amyloid burden

Early Patients, Slow Decline. In a subgroup of Phase 3 participants with low amyloid burden, those who started on lecanemab (green) maintain separation at three years from those who switched to lecanemab (black to green). [Courtesy of Eisai.]

Lecanemab Effect on Amyloid in Tau PET Substudy

Consistent Amyloid Reductions for Subgroups Across Clinical Assessments



Amyloid PET clearance (% <30 CL) in lecanemab	6m n (%)	12m n (%)	18m n (%)
Tau PET Substudy	48 (37.2)	83 (60.1)	79 (71.8)
Intermediate + High Tau PET	17 (20.2)	35 (42.7)	37 (56.9)
Low Tau PET	31 (68.9)	48 (85.7)	42 (93.3)

Observed data. CL, clearance; m, month; PET, positron emission tomography.

Subcutaneous formulation of Lecanemab: Effect of PK Profile on Incidence of ARIA-E

- AUC strongly predicted amyloid lowering
- Exposure-safety analyses based on IV in our Phase 2 and 3 trials (red line) found that lecanemab exposure (as C_{max,ss}, AUC_{ss}, C_{min,ss}) was correlated with ARIA-E
- Of these predictors, C_{max,ss} was strongest predictor of ARIA-E incidence following IV administration
- SC lecanemab results in minimal fluctuations between C_{max,ss} and C_{min,ss}, which is further influenced by more frequent dosing (weekly) compared to IV (biweekly)
- Thus, following SC administration, AUC_{ss}, a more representative exposure parameter of a flat PK profile, may be a better predictor of incidence of ARIA-E

Based on PK modeling

ARIA-E, amyloid related imaging abnormalities - edema; AUC_{ss}, area under the curve at steady state; Cmax,ss, maximum concentration at steady state; Cmin,ss, minimum concentration at steady state; IV, intravenous; PET, positron emission tomography; SC, subcutaneous.

Donanemab (Trailblazer Alz2, Lilly)

- 700 to 1400mg/month, IV, 72 weeks
- @12mth, 50% "neg" PET (10-25 CL), dosing ceased
- Mean baseline 100CL reduced 88%
- Significant relationship of Aβ lowering and slowing of clinical decline: 36% CDR-SB in low/med tau+ group; 50-60% slowing in milder cases
- 47% no progression of CDR-SB at 1 year, compared to 29% placebo; subjects 2 years less advanced 88% slowing, 2 years more advanced 6% slowing
- 40% lowering of plasma p-tau217, 20% GFAP
- p-tau181 reflects clearance at 24 weeks
- ARIA-E: 24% (6% symptoms; 1.5% serious); ARIA-H only if ARIA-E
- Trailblazer Alz5 (April '27)

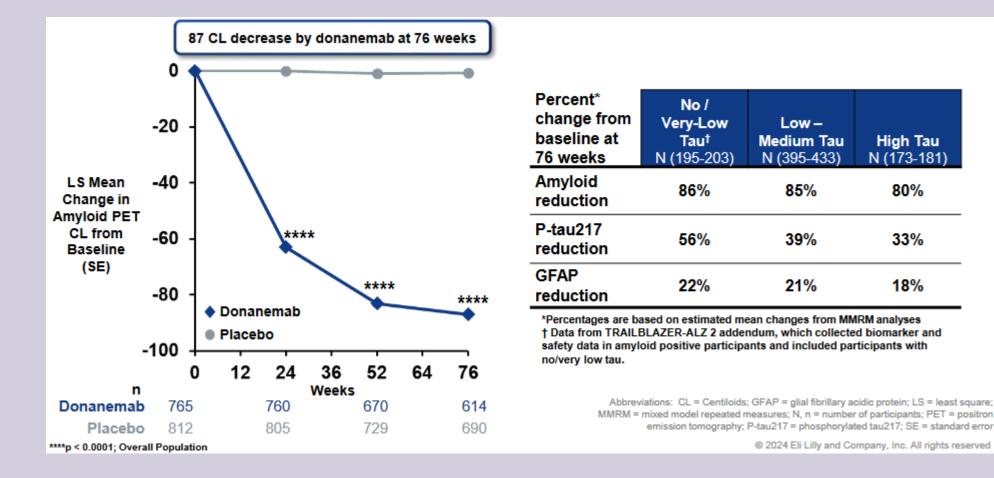
Amyloid reduction and effect in disease-relevant biomarkers supported donanemab use in all baseline tau participant groups

Low-

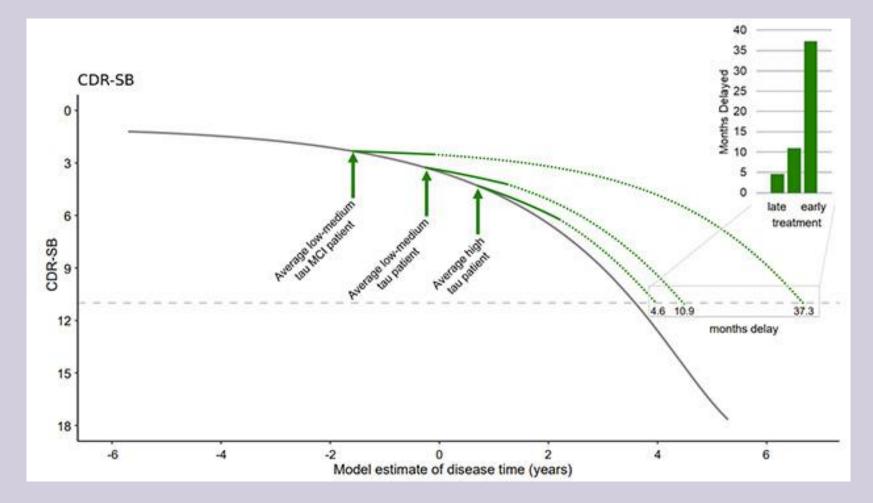
85%

39%

21%


High Tau

N (173-181)

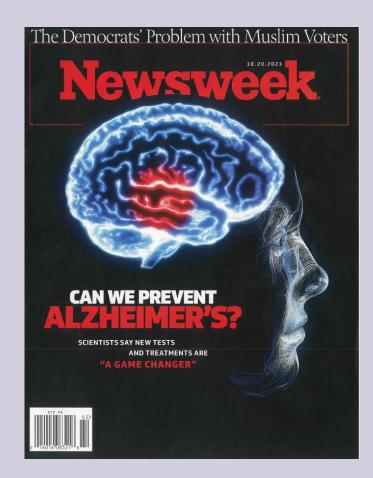

80%

33%

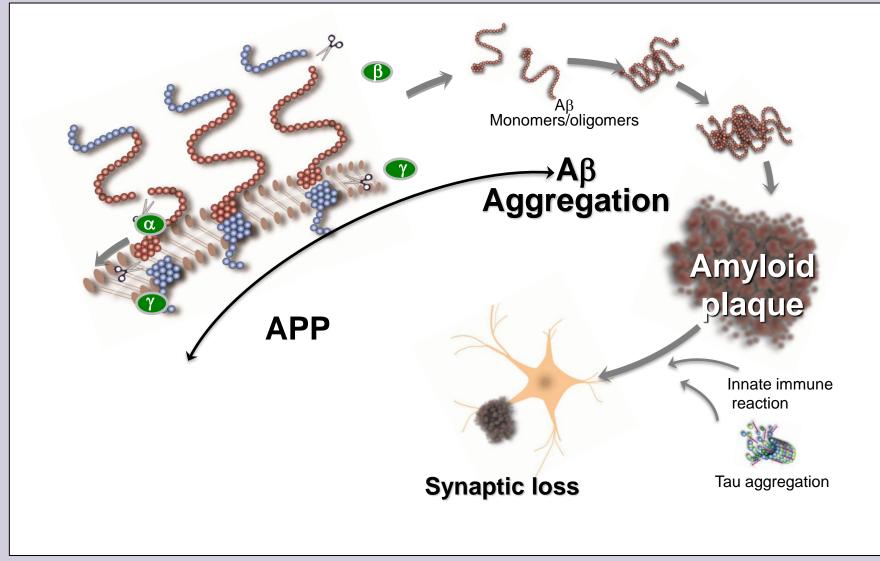
18%

A model based on Phase 3 donanemab data predicts that treatment effects will be greater in people who start at an earlier disease stage

Mcab passive immunotherapy learnings so far


- Go early, drive A β -PET to baseline
- Higher exposure, faster clearance, better outcomes
- Lower baseline Aβ and tau (before neocortical spread) have better outcomes, even reversing cognitive impairments
- Proof of concept that Aβ-lowering prevents/delays onset

Strategies for prevention (primary and secondary): Asymptomatic: (preclinical cognitive learning deficit; biofluid biomarker positive; genetic risk [APOE, PRS])


Secondary prevention, determined by cognitive (learning) and biofluid/PET markers: similar strategies as for symptomatic AD.

Primary prevention, low dose inhibition of production/aggregation if genetic risk factors present.

Pharma spent US\$600b 1999-2023 (Newsweek, October 20, 2023)

Step 7. A unified and coherent theory of Aβ the etiology of AD is formulated.

From little things, big things grow (Kelly and Carmody 1991)

Acknowledgements

AIBL would like to thank the study participants and their families

AIBL Study team:

Alex Barac	Eugene Hone
Pierrick Bourgeat	Fiona Lamb
Sveltana Bozinovski	Simon Laws
Belinda Brown	Hugo Leroux
Lesley Cheng	Qiao-Xin Li
Steven Collins	Florence Lim
Tim Cox	Lucy Lim
James Doecke	Lucy Mackintosh
Vincent Dore	Ralph Martins
Denise El-Sheikh	Paul Maruff
Binosha Fernando	Colin Masters
Christopher Fowler	Simon McBride
Jurgen Fripp	Tash Mitchell
Sam Gardener	Steve Pedrini
Simon Gibson	Kelly Pertile
Rodney Guzman	Tenielle Porter

Steph Rainey-Smith Jo Robertson Mark Rodrigues **Christopher Rowe** Rebecca Rumble Greg Savage KaiKai Shen Brendan Silbert Harmid Sohrabi Kevin Taddei Tania Taddei Christine Thai Brett Trounson **Regan Tyrell** Larry Ward Mike Weinborn

ith Rob Williams Michael Woodward Paul Yates George Zisis The Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing

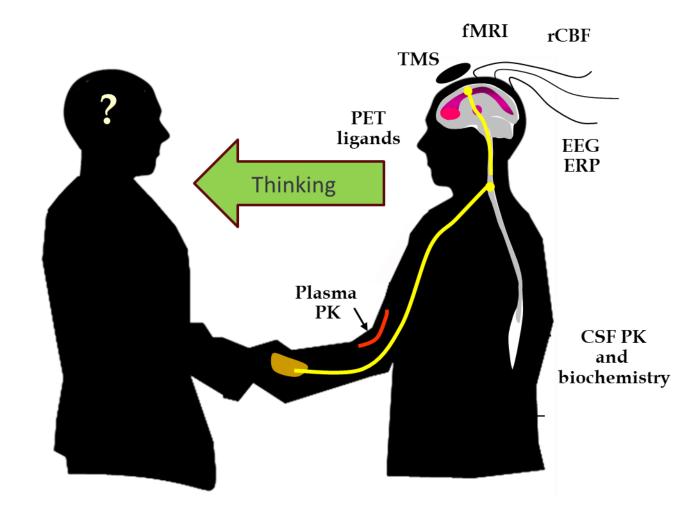
Collaborators

AIBL is a large collaborative study and a complete list of contributors can be found at <u>www.aibl.csiro.au</u>

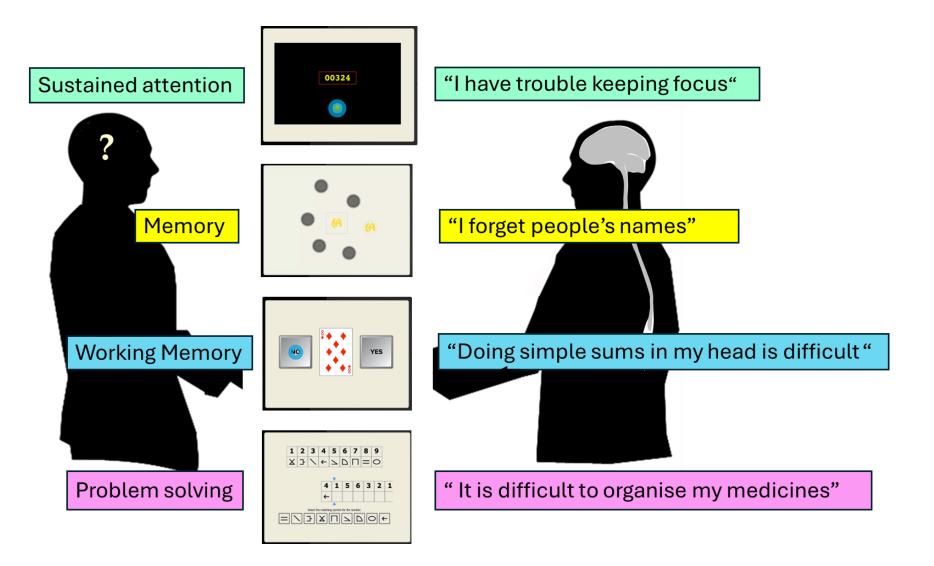
How cognitive and clinical data from AIBL has influenced clinical trial design

Paul Maruff

On behalf of the AIBL clinical group, and the AIBL study



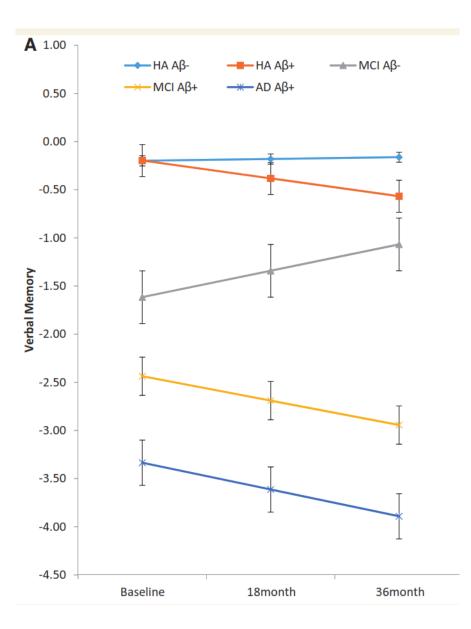
Australian Dementia Network REGISTRY. CLINICS. TRIALS.



INSTITUTE OF NEUROSCIENCE & MENTAL HEALTH

Clinical and cognitive (thinking) symptoms are expressions of Alzheimer's disease

To assess thinking we ask, and we measure

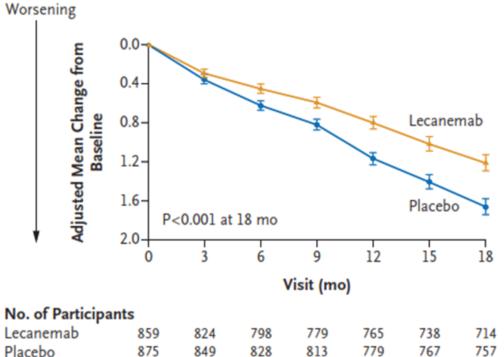


THEN: First detailed model of association between brain amyloid level and cognitive decline was from AIBL

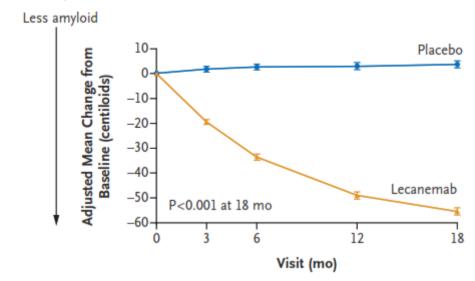
doi:10.1093/brain/awt286 Brain 2013: Page 1 of 11 | 1
BRAIN
A JOURNAL OF NEUROLOGY

Effect of amyloid on memory and non-memory decline from preclinical to clinical Alzheimer's disease

Yen Ying Lim,¹ Paul Maruff,^{1,2} Robert H. Pietrzak,³ David Ames,^{4,5} Kathryn A. Ellis,^{1,4,5} Karra Harrington,¹ Nicola T. Lautenschlager,^{4,6} Cassandra Szoeke,^{5,7} Ralph N. Martins,⁸ Colin L. Masters,¹ Victor L. Villemagne^{1,9,10} and Christopher C. Rowe^{9,10}, for the AIBL Research Group


NOW: There are two drugs that interfere with amyloid approved for the treatment of Alzheimer's disease

ORIGINAL ARTICLE


Lecanemab in Early Alzheimer's Disease

C.H. van Dyck, C.J. Swanson, P. Aisen, R.J. Bateman, C. Chen, M. Gee, M. Kanekiyo, D. Li, L. Reyderman, S. Cohen, L. Froelich, S. Katayama, M. Sabbagh, B. Vellas, D. Watson, S. Dhadda, M. Irizarry, L.D. Kramer, and T. Iwatsubo Approved Jan 2023

CDR-sum of boxes

B Amyloid Burden on PET

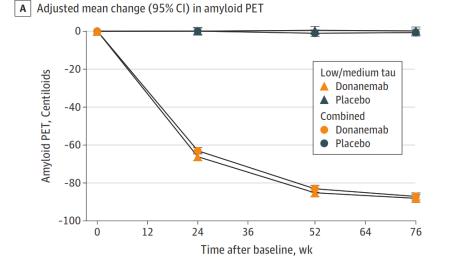
There are now drugs that interfere with amyloid approved for the treatment of Alzheimer's disease

JAMA | Original Investigation Donanemab in Early Symptomatic Alzheimer Disease The TRAILBLAZER-ALZ 2 Randomized Clinical Trial John R. Sims, MD; Jennifer A. Zimmer, MD; Cynthia D. Evans, PhD; Ming Lu, MD, MS, MPH; Paul Ardayfio, PhD; JonDavid Sparks, PhD; Alette M. Wessels, PhD; Sergey Shcherbinin, PhD; Hong Wang, PhD; Emel Serap Monkul Nery, MD; Emily C. Collins, PhD; Paul Solomon, PhD; Stephen Salloway, MD; Liana G. Apostolova, MD; Oskar Hansson, MD, PhD; Craig Ritchie, MD, PhD; Dawn A. Brooks, PhD; Mark Mintun, MD; Daniel M. Skovronsky, MD, PhD; for the TRAILBLAZER-ALZ 2 Investigators CDR-SB in combined population D C) Adjusted mean change (95% in CDR-SB Donanemab Worsening Placebo 2 3 36 52 64 76 12 24 0 Time after baseline, wk No. of participants Placebo 838 825 784 752 713 678 672

Donanemab 794

774

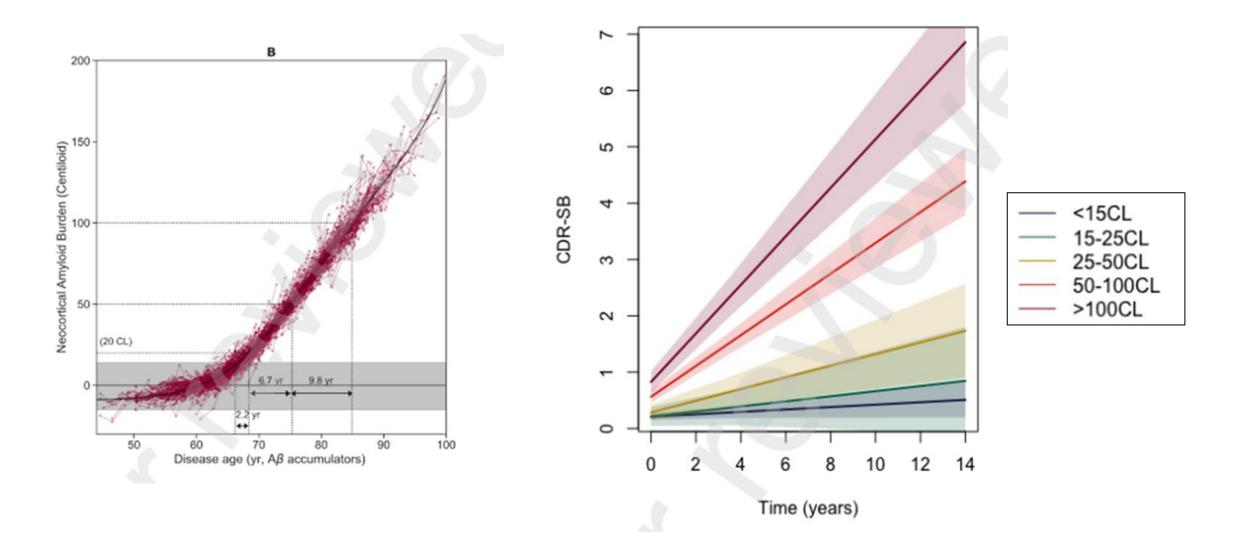
731

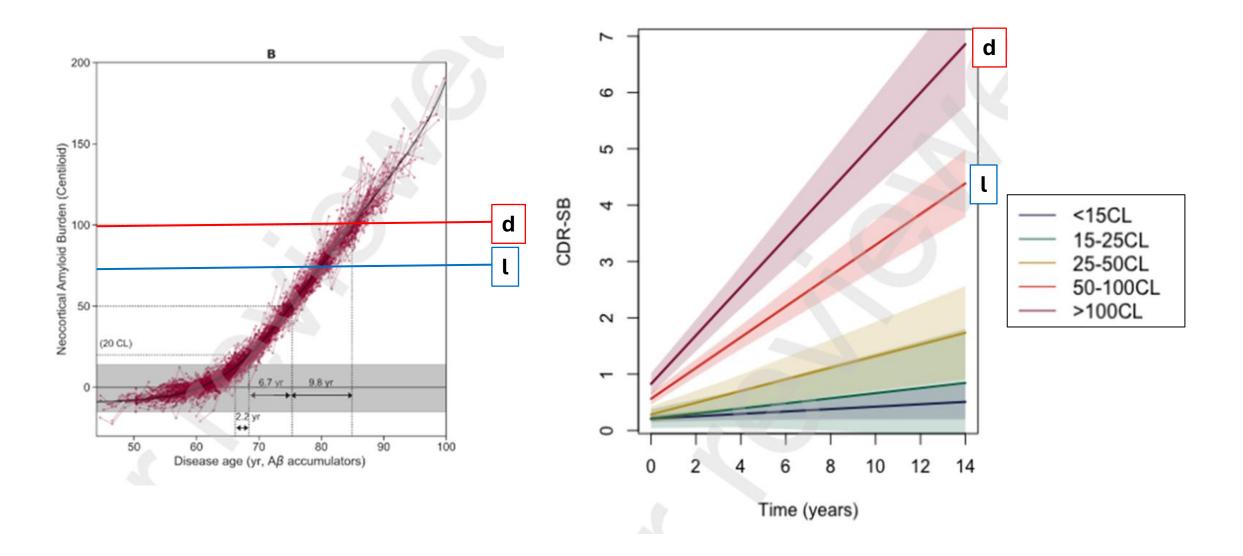

682

650

603

598

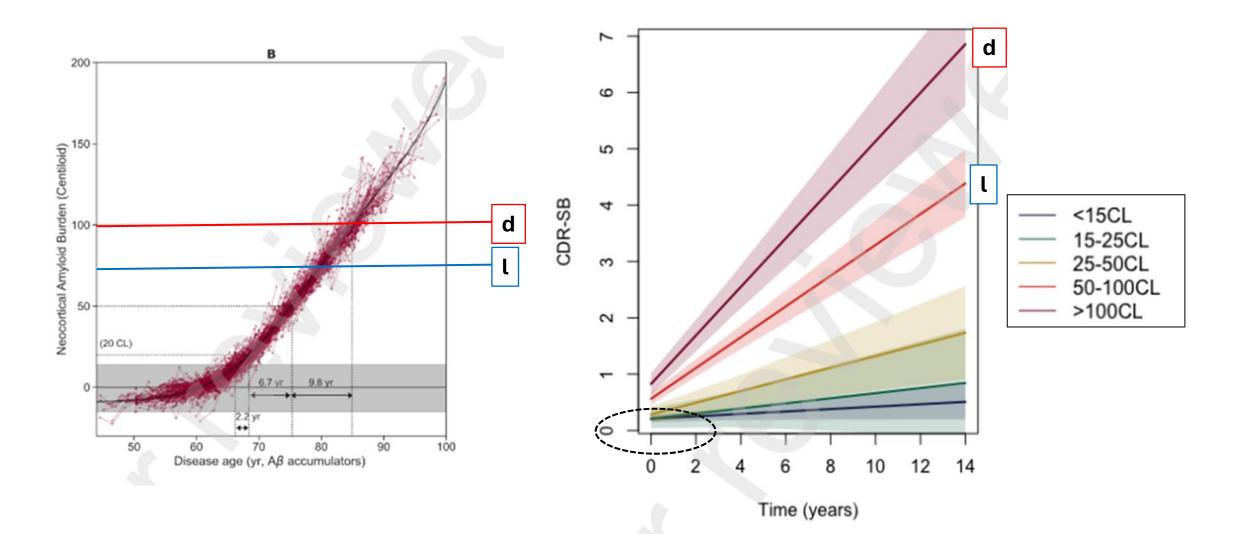

Approved July 2024


The clinical outcome used to decide that new drugs were efficacious was the clinical dementia rating scale (CDR)

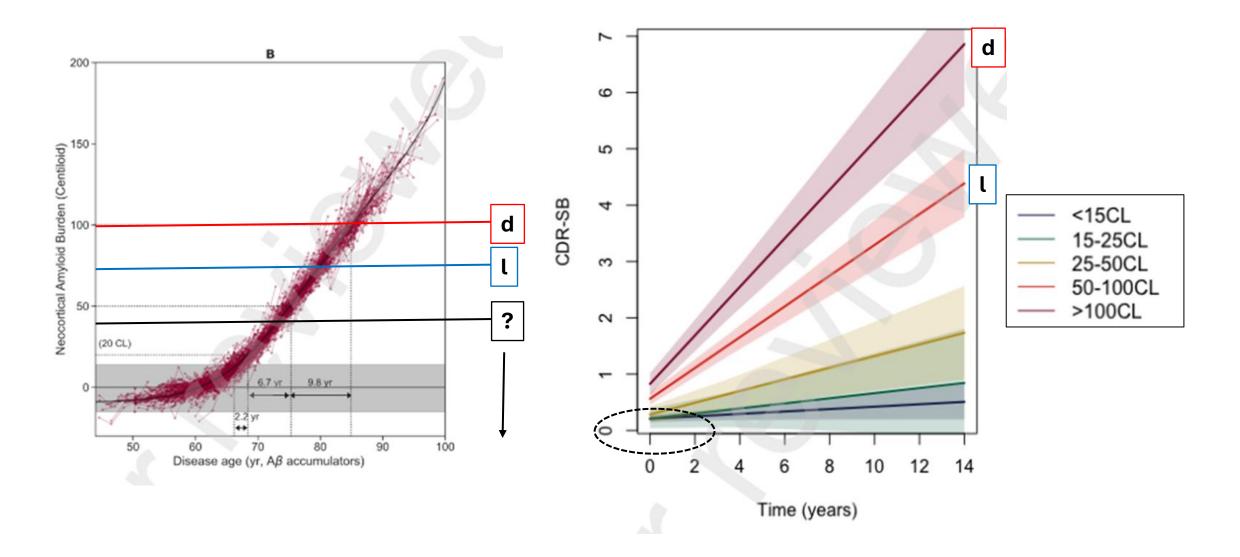
			Impairment		
	None 0	Questionable 0.5	Mild 1	Moderate 2	Severe 3
Memory	No memory loss or slight inconsistent forgetfulness	Consistent slight forgetfulness; partial recollection of events; "benign" forgetfulness	Moderate memory loss; more marked for recent events; defect interferes with everyday activities	Severe memory loss; only highly learned material retained; new material rapidly lost	Severe memory loss; only fragments remain
Orientation	Fully oriented	Fully oriented except for slight difficulty with time relationships	Moderate difficulty with time relationships; oriented for place at examination; may have geographic disorientation elsewhere	Severe difficulty with time relationships; usually disoriented to time, often to place	Oriented to person only
Judgment & Problem Solving	Solves everyday problems & handles business & financial affairs well; judgment good in relation to past performance	Slight impairment in solving problems, similarities, and differences	Moderate difficulty in handling problems, similarities, and differences; social judgment usually maintained	Severely impaired in handling problems, similarities, and differences; social judgment usually impaired	Unable to make judgments or solve problems
Community Affairs	Independent function at usual level in job, shopping, volunteer and social groups	Slight impairment in these activities	Unable to function independently at these activities although may still be engaged in some; appears normal to casual inspection	No pretense of independent function outside home Appears well enough to be taken to functions outside a family home Appears too ill to be taken to functions outside a family home	
Home and Hobbies	Life at home, hobbies, and intellectual interests well maintained	Life at home, hobbies, and intellectual interests slightly impaired	Mild but definite impairment of function at home; more difficult chores abandoned; more complicated hobbies and interests abandoned	Only simple chores preserved; very restricted interests, poorly maintained	No significant function in home

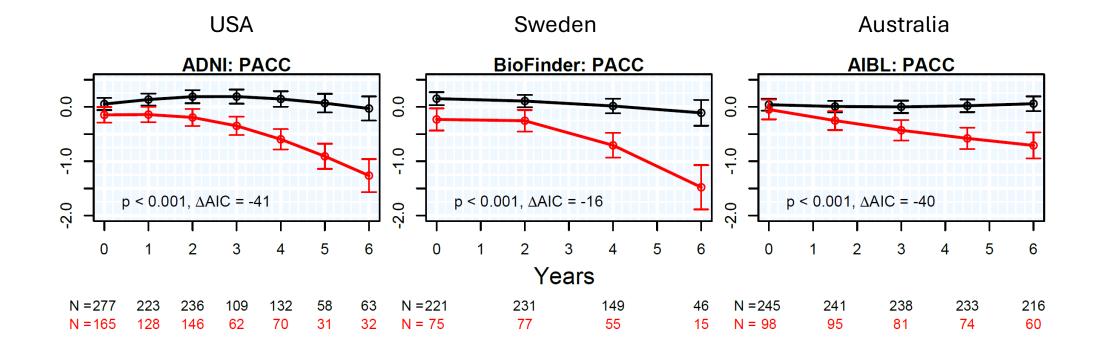
Modelling relationship between clinical and biological aspects of Alzheimer's disease in AIBL

Modelling relationship between clinical and biological aspects of Alzheimer's disease in AIBL



Two drugs approved by FDA, more to come.




Modelling relationship between clinical and biological aspects of Alzheimer's disease in AIBL

Modelling relationship between clinical and biological aspects of Alzheimer's disease in AIBL

Alzheimer's disease without symptoms – preclinical AD

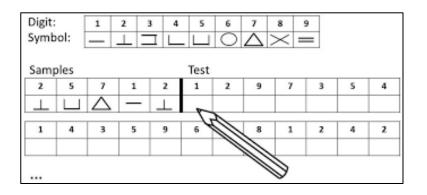
PACC: Examples of the assessments you have done over the years that contribute to this outcome

LIST A	1	2	3	4	5
DRUM					
CURTAIN					
BELL					
COFFEE					
SCHOOL					
PARENT					
MOON					
GARDEN					
HAT					
FARMER					
NOSE					
TURKEY					
COLOR					
HOUSE					
RIVER					
SCORE					

Memory for Lists

Maria's / child / Ricky / played / soccer / every / Monday /

at 3:30. / He / liked / going / to the field / behind / their / house /

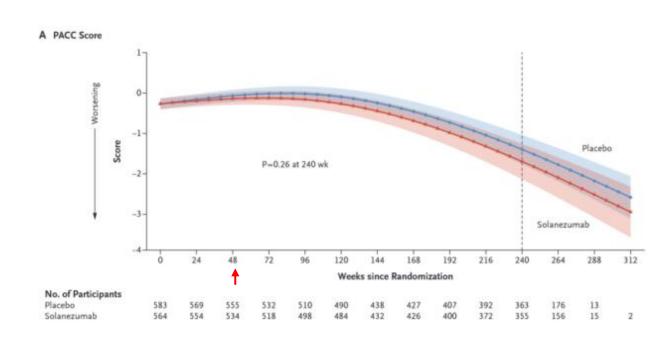

and joining / the game. / One / day, / he / kicked / the ball / so / hard /

that it / went / over / the neighbor's / fence / where three / large /

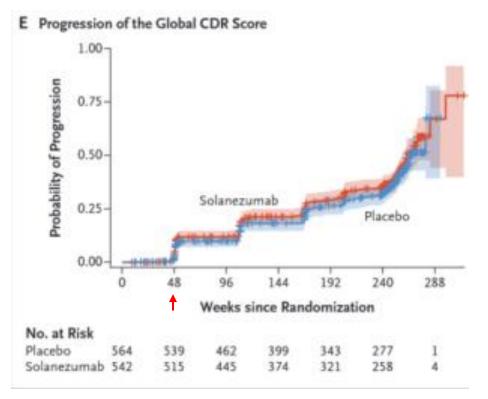
dogs / lived. / The dogs' / owner / heard / loud / barking, / came /

out, / and helped / them / retrieve / the ball.

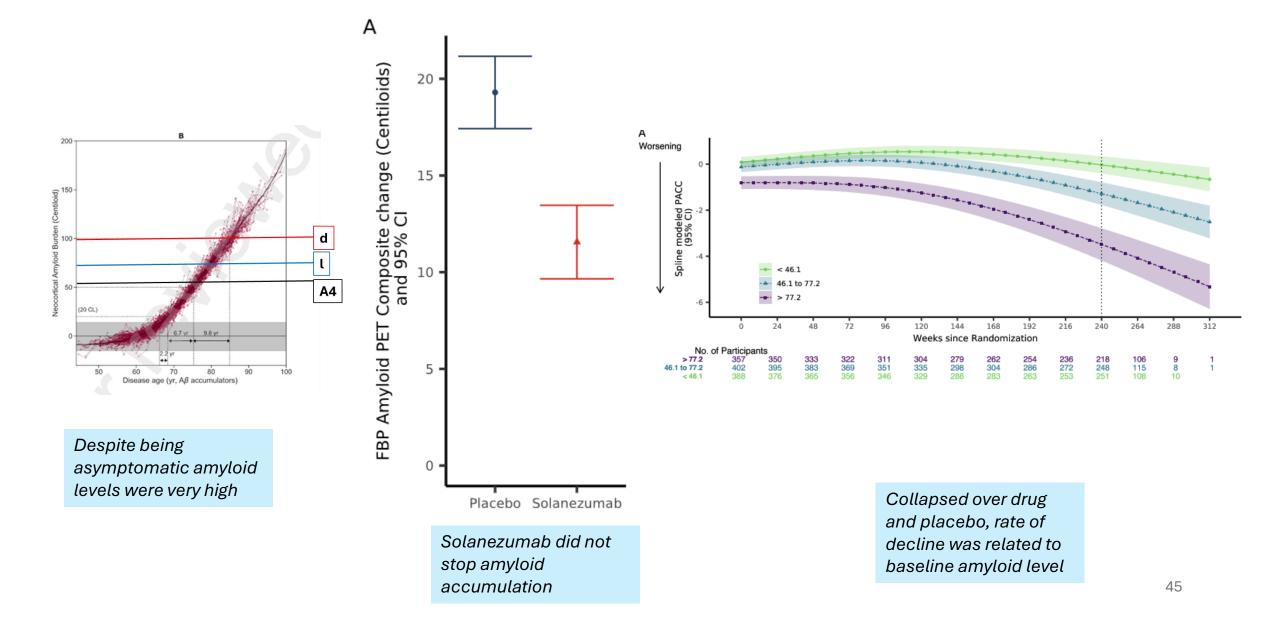
Memory for stories


Pattern matching

"As many animals as you can think of"


Novelty generation

The first study investigating whether amyloid accumulation could be stopped before symptoms. (FAILED)



No decline in PACC score at one year

~10% progression to MCI at one year

This is most likely that the drug was not effective, rather than the hypothesis was incorrect

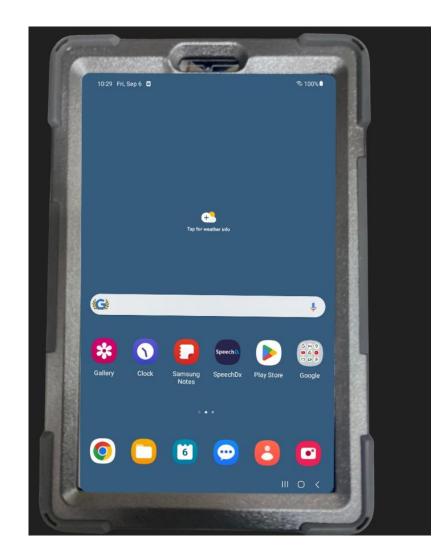
But we have learned a great deal from A4. Now both lecanemab and donanemab are in prevention trials

Participants With Preclin	idy to Evaluate Efficacy and Safety of Tr ical Alzheimer's Disease and Elevated A er's Disease and Intermediate Amyloid		
ClinicalTrials.gov ID 🕕 NCT04468	659		
Sponsor 🕕 Eisai Inc.			
Information provided by 🕕 Eisai I	nc. (Responsible Party)		
Last Update Posted 🕕 2025-01-0			
₹ □		+ Expand all content - Collapse all content	
Study Details Res	earcher View No Results Posted	Record History	
On this page			
Study Overview	Study Overview		
Contacts and Locations	Brief Summary	Study Start (Actual)	
Participation Criteria	The primary purpose of this study is to determine		
Study Plan	superior to placebo on change from baseline of the Composite 5 (PACC5) at 216 weeks of treatment	Drimony Completion (Estimated)	
Collaborators and Investigators	treatment with lecanemab is superior to placebo		
Collaborators and Investigators Study Record Dates	treatment with lecanemab is superior to placebo as measured by amyloid positron emission tomo (A3 Trial). This study will also evaluate the long-te	graphy (PET) at 216 weeks of treatment	

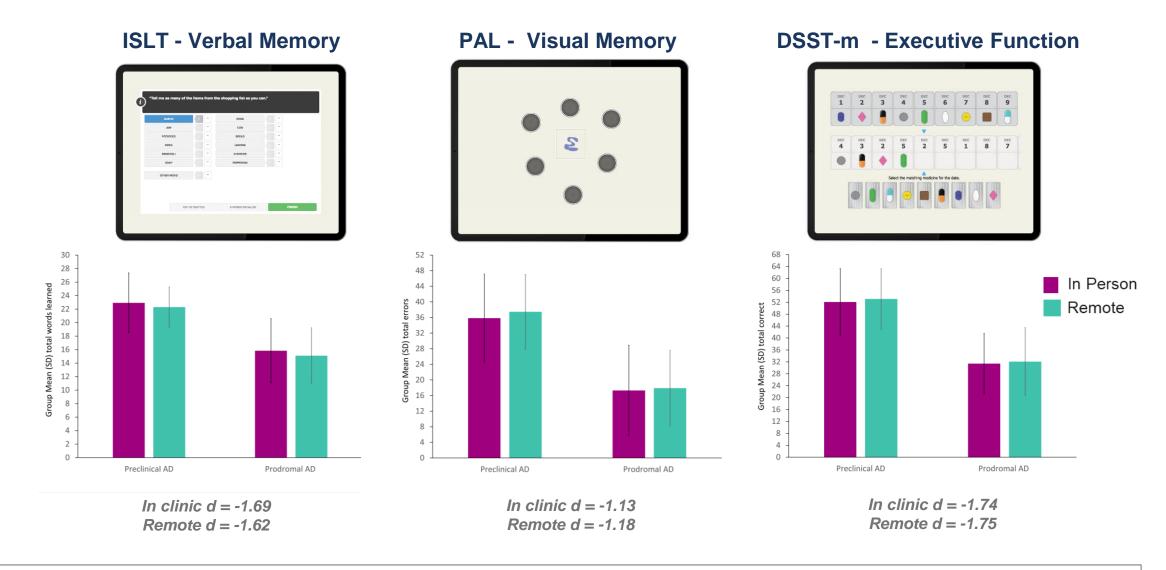
linicalTrials.gov ID 🕕 NC	05026866				
ponsor 🕕 Eli Lilly and Cor	ipany				
formation provided by 🕕	Eli Lilly and Company (Res	ponsible Party)			
ast Update Posted 🕕 202	-01-24				
				+ Expand a	all content Collapse all conte
Study Details	Researcher View	No Results Posted	Record History		
Study Details	Researcher View	No Results Posted	Record History		
	Researcher View	No Results Posted	Record History		
On this page			Record History		
On this page Study Overview	Study Ove		Record History		Study Start (Actual) 9
On this page Study Overview Contacts and Locations	Study Over Brief Summary		· · · ·		Study Start (Actual) 2021-08-27
On this page Study Overview Contacts and Locations Participation Criteria	Study Over Brief Summary The main purp	rview	e safety and efficacy of c		2021-08-27
On this page Study Overview Contacts and Locations Participation Criteria Study Plan	Study Over Brief Summary The main purp participants wi	rview	e safety and efficacy of c		2021-08-27 Primary Completion (Estimated) ④
On this page Study Overview Contacts and Locations Participation Criteria Study Plan Collaborators and Investigat	Study Over Brief Summary The main purp participants wi Official Title	rview	e safety and efficacy of c	lonanemab in	2021-08-27
On this page Study Overview Contacts and Locations Participation Criteria Study Plan	Study Over Brief Summary The main purp participants wi Official Title A Study of Dor	rview ose of this study is to evaluate the ith preclinical Alzheimer's Disease	e safety and efficacy of c	lonanemab in	2021-08-27 Primary Completion (Estimated) ④

What's next in AIBL clinical? 1. assessment of speech and language: (with the USA: ADDF)

SpeechDx


- Collaboration with the Alzheimer's Drug Discovery Foundation.
- Multi-site, observational study of 2,650 participants across several global clinical sites.

Aims


- To build the world's largest repository of longitudinal, harmonized speech and clinical data.
- To assess whether subtle changes in speech patterns can be used to diagnose Alzheimer's disease at a very early stage.

Procedure

- Speech data to be collected via a study-provided tablet on a quarterly basis for 3 years.
- Participants will complete a practice session at their next AIBL visit, then be provided with a tablet to take home and complete quarterly assessments.
- Assessments take ~20 minutes.
- Tablet can be used recreationally in between assessments and will be gifted to participants upon completion of the study.

What's next in AIBL clinical? 2. remote assessments

Standardized scores combined into composite score, **Remote PACC**: Preclinical AD = -0.29 (0.33), Prodromal AD = -1.19 (0.41); d = -2.4

Thank you

Understanding Lumbar Punctures

- Lumbar punctures are performed by A/Prof Brendan
 Silbert MBBS FANZCA
- Bookings and are arranged through the CACF of the Department of Anaesthesia and Acute Pain Medicine at SVHM
 - LP research team: Annemieke Kidd

Antonio (Tony) Jimenez

• Ph: 9231 2072

Understanding Lumbar Punctures

What to expect

What is a Lumbar Puncture (LP)?

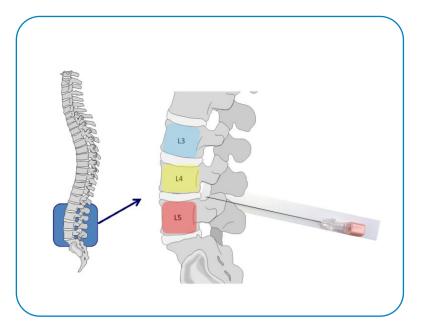
- Procedure to collect cerebrospinal fluid (CSF).
- CSF surrounds the spinal cord and brain.
- Thin needle inserted into lower back (L3-L4 or L4-L5).
- Minimizes risk by avoiding nerves at higher levels.

What to Expect on the Day:

Preparation:

- Fast from midnight; small sips of water allowed.
- Safety call and confirmation the day before.

During the Procedure:


- Asked a few questions during admission
- Change into hospital gown.
- Meet anaesthetist and assistant for any questions and confirm consent.
- Procedure duration: ~20 minutes.
- \circ \quad Sit still on your side during the procedure.

After the Procedure:

- Rest for at least 30 minutes under supervision.
- Avoid lifting heavy items, vigorous exercise, or driving.
- Ensure someone is available to accompany you home.

Potential Side Effects:

- Minor: Bruising, swelling, or headache (1-2 days typical).
- Rare: Severe headache (treatable with bed rest and medication).
- Very rare:
 - Infection (less risk than a regular blood test).
 - Temporary or permanent nerve damage.
 - Paralysis (1 in a million chance).

All steps are taken to minimize risks and ensure patient safety

Why Lumbar Punctures matter

Open access

BMJ Neurology Open Cerebro spinal fluid sampling for research of Alzheimer's disease and other neurodegenerative diseases when lumbar punctures are performed by anaesthetists

Kelly J Atkins,^{1,2} Lisbeth Evered,^{1,2,3} David A Scott,^{1,2} Christopher Fowler,⁴ Colin L Masters,⁴ Brendan Silbert ^{1,2}

To cite: Atkins KJ, Evered L, Scott DA, et al. Cerebrospinal fluid sampling for research of Alzheimer's disease and other neurodegenerative diseases when lumbar punctures are performed by anaesthetists. BMJ Neurology Open 2022;4:e000335. doi:10.1136/ bmjno-2022-000335

Accepted 11 August 2022

Check for updates

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

¹Department of Anaesthesia and Acute Pain Medicine, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia ²Department of Critical Care.

ABSTRACT

Objectives An increasing number of people are undergoing lumbar puncture (LP) for the purposes of research. Performing LP for research purposes introduces considerations that differ from LP performed for clinical, diagnostic or therapeutic reasons. The demand for research LP will greatly increase as biomarkers are used to both diagnose and monitor disease progression in clinical trials. Minimising adverse events is paramount because research participants receive no clinical benefit and often need repeat procedures. We describe the experience of performing LP for research by anaesthetists. Methods We reviewed the clinical protocol and incidence of adverse events in 326 research LP in an anaesthesia

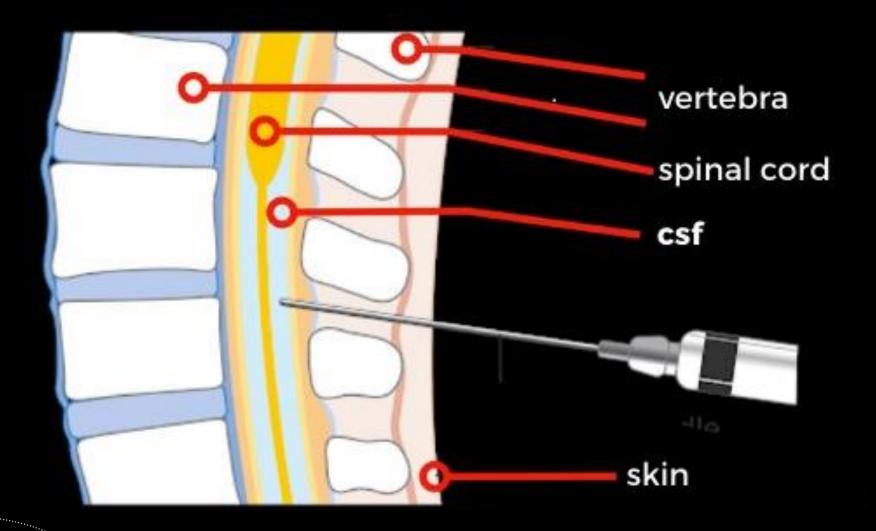
department. **Results** There was a lower incidence of adverse events compared with previous reports when LP was undertaken for clinical reasons. The incidence of severe post-LP headache was 1.3% when an atraumatic spinal needle with a 27 gauge tip and a 22 gauge shaft was used. **Conclusions** We describe the practice to sample cerebrospinal fluid (CSF) by LP for research purposes. Specific practices include the sitting position of the participant, aspiration rather than passive CSF withdrawal, attention to the sterility of the procedure, monitoring of vital signs and importantly the use of 22/27 gauge microtip spinal needle.

Trial registration numbers ACTRN12612000493842, NCT04623242. than for clinical management,³ a different informed consent⁴ and a requirement for a positive participant experience to facilitate retention. Complications of LP include post-LP headache (PLPH), paraesthesia, back pain, vasovagal events, nerve injury, nausea, vomiting and dizziness.⁵⁶

Short report

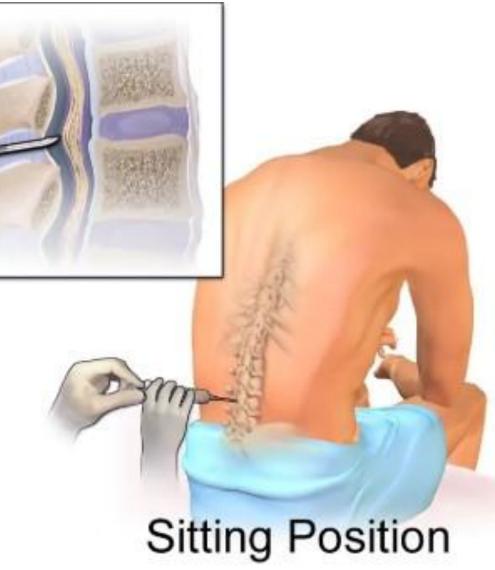
Anaesthetists commonly perform spinal anaesthesia, for which the clinical skills are essentially identical to those required for research LP. We describe the LP for research as distinct from diagnostic or therapeutic indications in an anaesthesia department.

MATERIALS AND METHODS


Between 2011 and 2021, after written informed consent, participants underwent LP by anaesthetists for one of two institutionally approved research studies on Alzheimer's disease:

- Australian Imaging, Biomarker and Lifestyle Study of Ageing (AIBL) (ACTRN12612000493842).
- Dominantly Inherited Alzheimer Network (DIAN) (NCT04623242).

All relevant information pertaining to the LP was recorded on a specific case report



The Lumbar Puncture detail

The Lumbar Puncture detail

AIBL CSF projects

Chris Fowler

1. Establishment of National Dementia Diagnostic Laboratory at Florey

- CSF biomarker thresholds and clinical testing

2. Blood Immune Cell populations in CSF

- Nature Communications paper

Clinical testing

- Laboratory established in 2014 to measure Clinical CSF.
- NATA-accredited.
- Only pathology lab in Australia to analyse CSF dementia and CJD biomarkers.
- NDDL tests 30 samples/week. CJD is rare, dementia panel differentiates between CJD and AD.
- 1st generation tests were research kits. Use AIBL samples to generate Australia-specific threshold.
- 2nd generation automated/robotic Roche Elecsys.
 - AIBL contributed to setting cut-off applicable world-wide.
- More markers being introduced for NATA accreditation. NfL helps with identifying MND, MS and AD.
- Next international project is to add another marker to the AD panel.

National Dementia Diagnostics Laboratory

Cobas® e601 (GI)

Research: Blood immune cells entering the brain

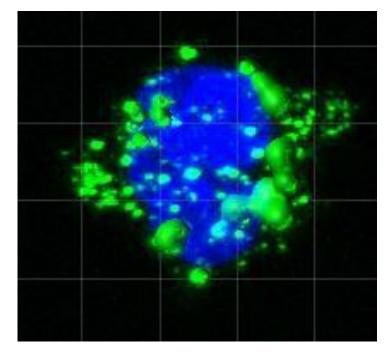
Background

Typically thought that blood immune cells do not enter brain to large extent except during inflammation.

New research

- We characterised a subtype of blood monocyte that binds Abeta.
- This subtype is the main type of monocyte present in the CSF, even in healthy participants. When labelled blood immune cells were injected into animal brain CSF, the cells migrated back into the blood stream.
- In MCI/AD these cells carry less Abeta.

Thus peripheral blood monocytes entering the brain and leaving with Abeta may be another mechanism for controlling Abeta levels in the brain.


Article

https://doi.org/10.1038/s41467-024-52396-

Clearance and transport of amyloid β by peripheral monocytes correlate with Alzheimer's disease progression

Received: 1 November 2023
Accepted: 2 September 2024
Published online: 12 September 2024
Check for updates

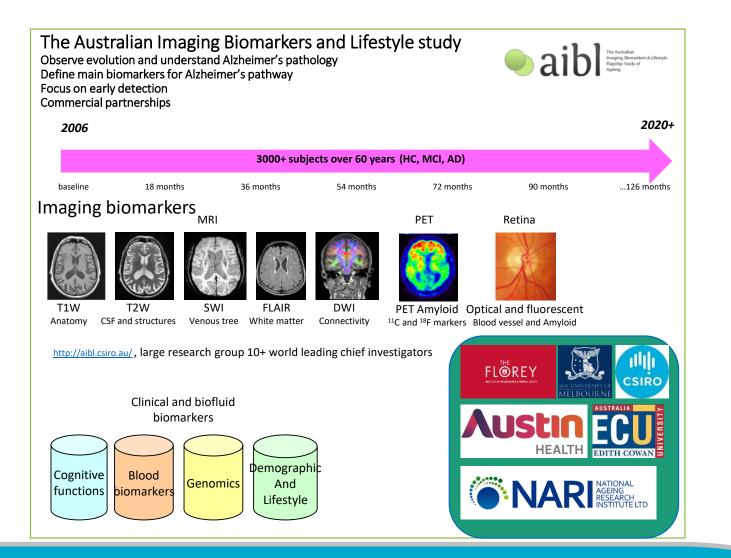
Xin Huang ^{1,2}, Chris Fowler¹, Yihan Li¹, Qiao-Xin Li^{1,3}, Jiaqi Sun¹, Yijun Pan ¹, Liang Jin¹, Keyla A. Perez¹, Céline Dubois ¹, Yen Y. Lim⁴, Candace Drysdale¹, Rebecca L. Rumble¹, Holly R. Chinnery ^{5,6,7}, Christopher C. Rowe⁸, Ralph N. Martins⁹, Paul Maruff^{1,10}, James D. Doecke ¹¹, Yong Lin ¹², Abdel A. Belaidi ¹, Kevin J. Barnham¹, Colin L. Masters¹ & & Ben J. Gu ^{1,2,12}

Confocal microscope image of monocyte with surface-bound abeta.

Australia's National Science Agency

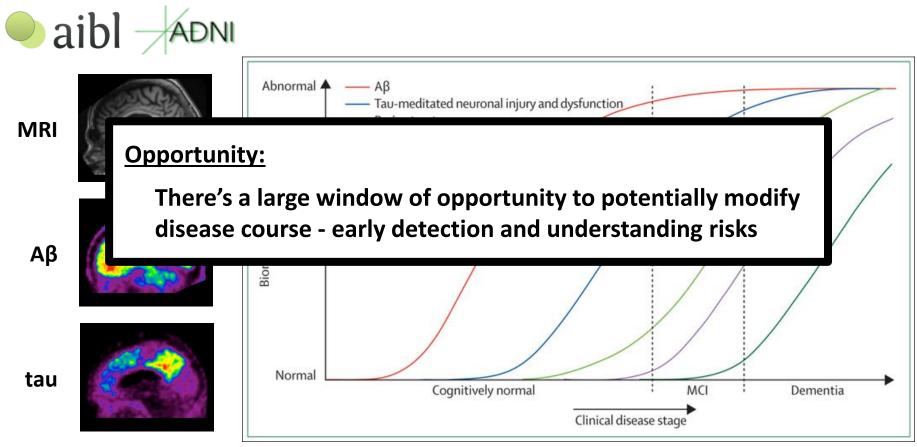
AIBL: AI and interpreting data

Jurgen Fripp

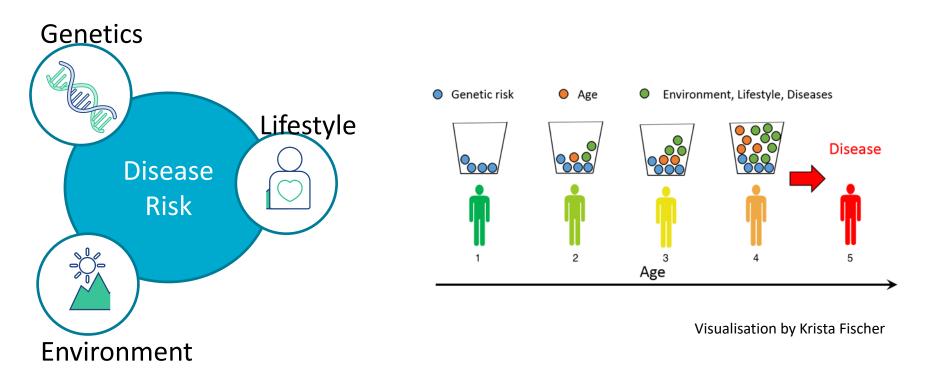

Group Leader of Biomedical Informatics Health & Biosecurity The Australian e-Health Research Centre

February 2025

Innovative medical technologies for the discovery of meaningful patterns and biomarkers from biomedical data.


THE AUSTRALIAN **E**•**HEALTH** RESEARCH CENTRE

AIBL Data



Alzheimer's – hypothetical disease model

Rowe, Villemagne, Jack

AIBL long term goal: Precision medicine

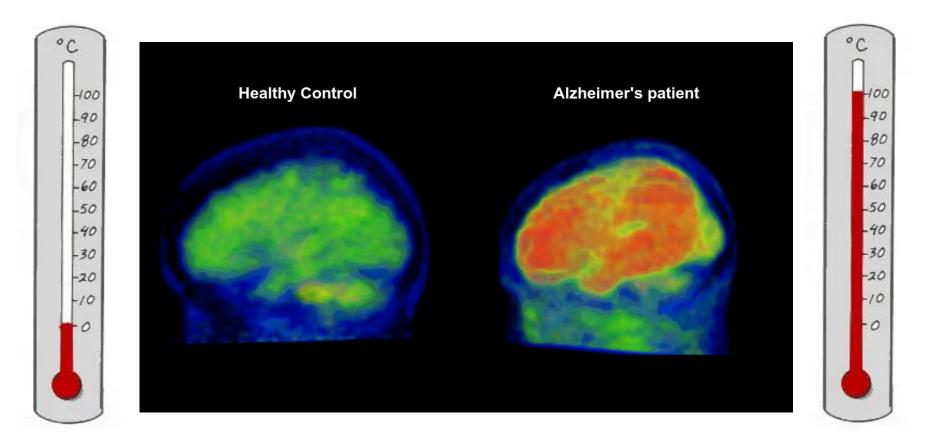
AI/ML is one approach to address large data problems in precision medicine.

- Automation of processes (e.g. medical image analysis, omics, digital biomarkers) – may improve sens/spec and reliability
- Diagnosis
- Risk prediction

Australia's National Science Agency

DeepSUVR

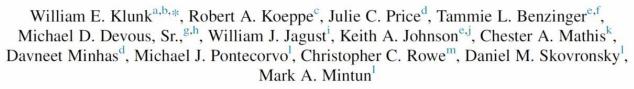
Using temporal constraints to improve SUVR and Centiloid quantification

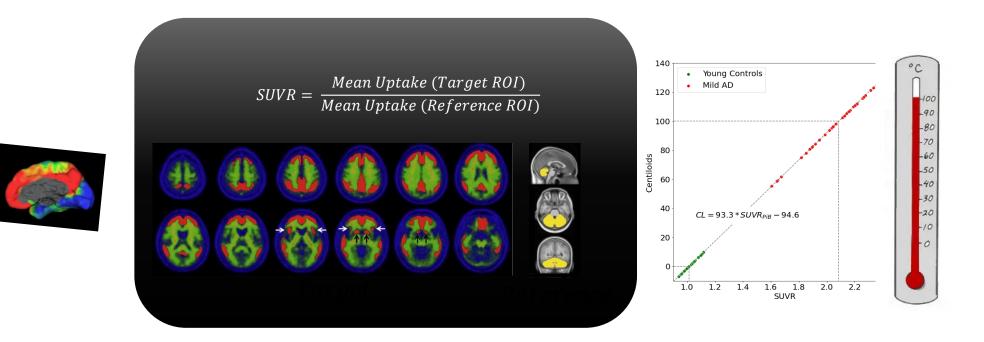

Pierrick Bourgeat, Jurgen Fripp, Ashley Gillman, Leo Lebrat, Tim Cox, Manu Goyal, Duygu Tosun, Pamela LaMontagne, Tammie Benzinger, Michael W. Weiner, Victor L Villemagne, Colin Masters, Christopher C Rowe, Vincent Dore

for the ADOPIC research group (AIBL, ADNI and OASIS3)

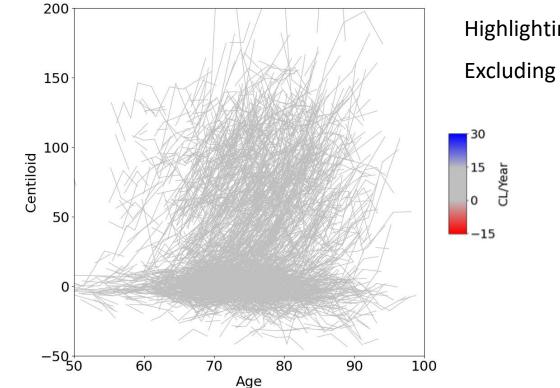
٠

Amyloid PET Imaging: Centiloid measure




Centiloid measure is calibrated from a set of Young Controls (0 CL) and mild AD (100 CL)

The centiloid project: Standardizing quantitative amyloid plaque estimation by PET


Centiloid measure is calibrated from a set of Young Controls (0 CL) and mild AD (100 CL)

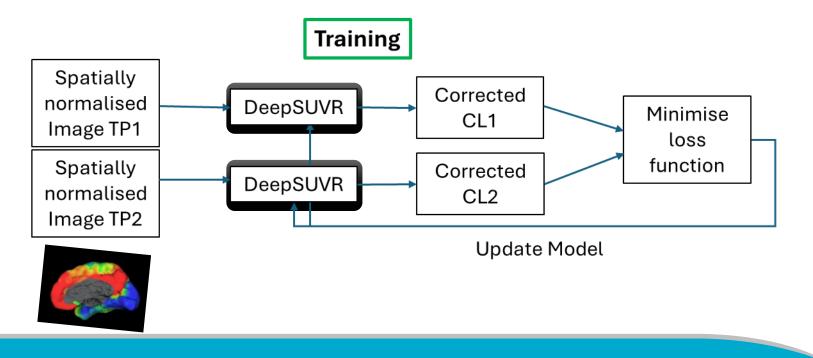
Alzheimer's

بئ Dementia

Longitudinal trajectories

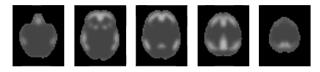
Highlighting outliers Excluding ¹⁸F-Florbetapir

Variability in CL measures (changes in equipment/tracers):


- Reduced reliable across tracers/participants
- Monitoring changes and estimating natural history less accurate

DeepSUVR: AI Solution

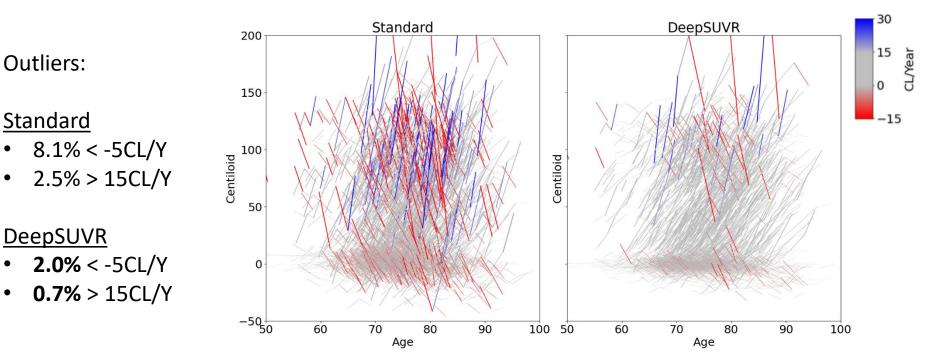
Incorporate longitudinal PET information into the training of our <u>AI</u> model (DeepSUVR)


Data: AIBL, ADNI, OASIS (3098 participants), Cross Validation on 2288 participants. Tested on remaining subjects and 4 other international cohorts (6325 participants).

Explainability: What's the black box doing

Optimising Target mask

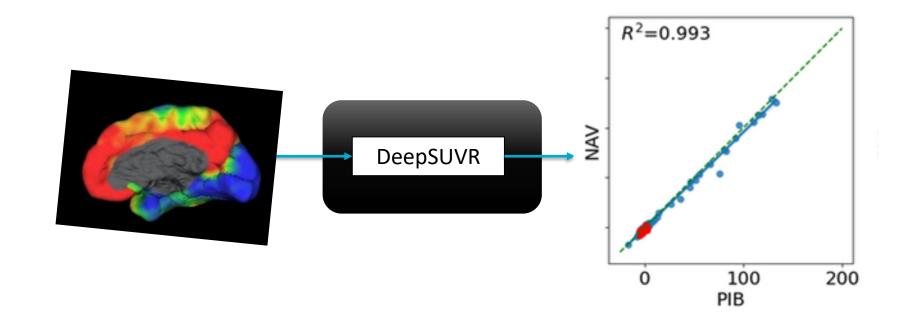
Optimising Reference mask


AIBL/ADNI – Cross-validation

•

•

•


•

7403 scans from 2288 participants

Unseen data: GAAIN Head-to-Head Centiloid Calibration

Conclusion

- Developed a robust machine learning technique that
 - Reduces variability in longitudinal trajectories
 - Improves Tracer agreement
- Current research
 - Evaluate DeepSUVR to other PET tracers (Tau, FDG)
 - Better understand what information is used for the correction (Explainability)

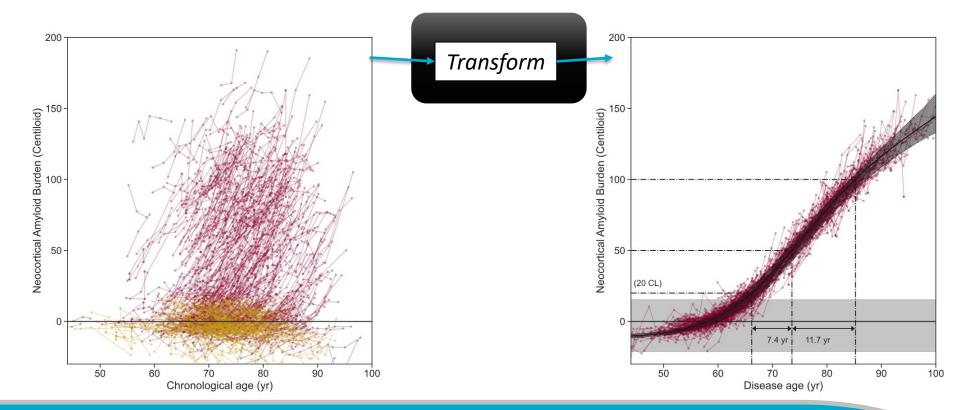
Australia's National Science Agency

Natural History Modeling

When does Alzheimer's disease start? Robust estimates based on longitudinal data from three large international cohorts.

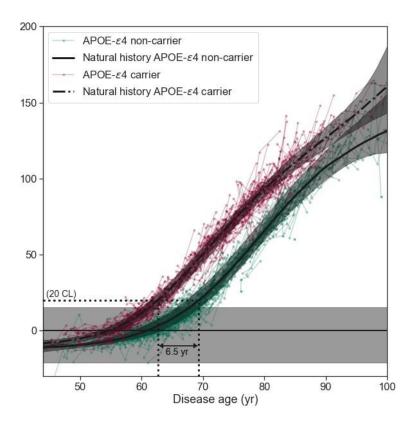
Samantha C. Burnham*, Timothy Cox, Tammie Benzinger, Pierrick Bourgeat, Carlos Cruchaga, James D. Doecke, Vincent Doré, Christopher Fowler, Manu S. Goyal, Liang Jin, Simon M. Laws, Jason Hassenstab, Tenielle Porter, Paul Maruff, Rob Williams, Andrew J. Saykin, Rosita Shishegar, Hamid R. Sohrabi, Ronald Petersen, Duygu Tosun, Jurgen Fripp, Christopher C. Rowe, John C. Morr Weiner, Colin L. Masters and Victor L. Villemagne

Attachmer's Attac


for the ADOPIC research group (AIBL, ADNI and OASIS3)

$A\beta$ natural history curve

Natural history modelling characterizes disease onset and progression. A β burden abnormal (<20CL) at a mean age of 66.2 years, 19.1 years before reaching level associated with AD (>100CL)



Participants with three or more Amyloid β PET (A β PET) scans: AIBL (N=496), ADNI (N=465), OASIS (N=127)

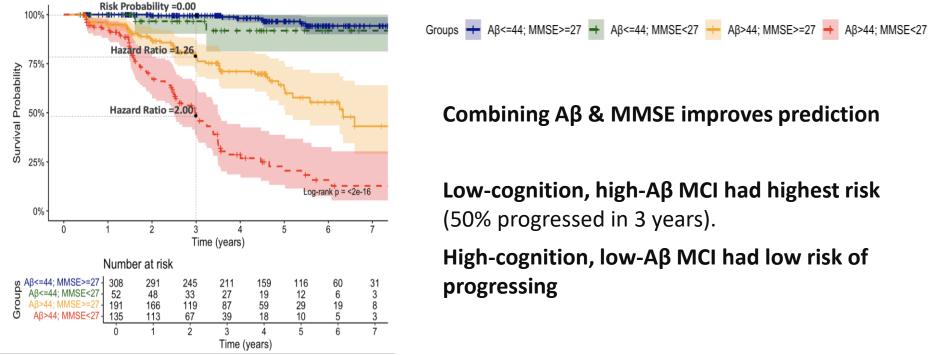
A β natural history curve: stratified by e4

May improve individualised staging.

On average APOE- ϵ 4 carriers have detectable abnormal A β level 6.5 earlier than non-carriers

Risk Models

Identifying an Optimal Cutoff Point for Progression from Mild Cognitive Impairment to Alzheimer's Disease: Comparing Cognitive Performance and Aβ PET Insights


Rosita Shishegar, Pierrick Bourgeat, Vincent Dore, Simon Laws, Tenielle Porter, Michael Weiner, Colin L. Masters, Jurgen Fripp, Victor L. Villemagne, Christopher C. Rowe for the Alzheimer's Disease Neuroimaging Initiative⁸ and the AIBL Research Group

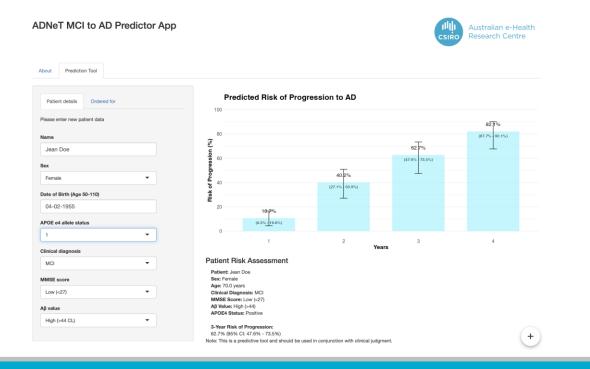
MCI-to-AD progression

686 MCI participants (CDR 0.5) from AIBL (N=166) & ADNI (N=520), analysed using Cox models

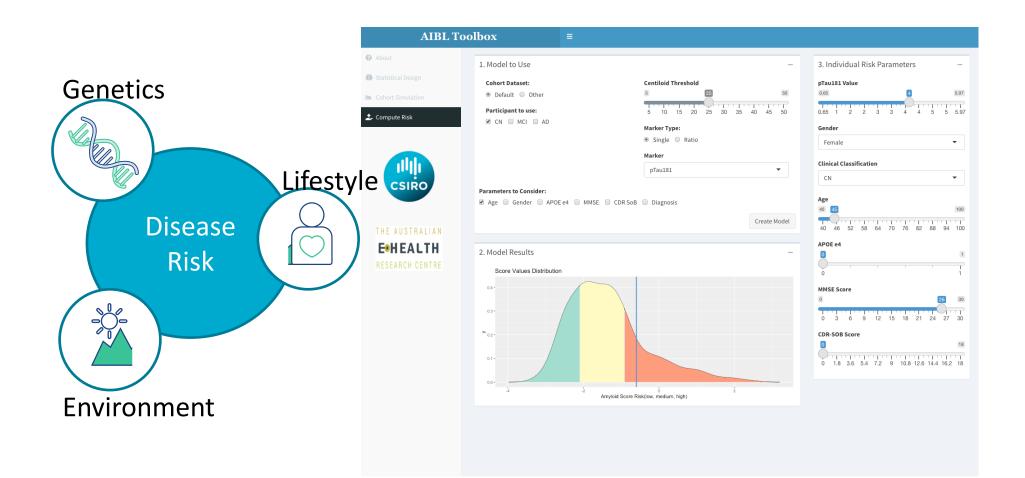
Optimal thresholds: Aß **44 CL** & MMSE **27** selected for maximum hazard ratio (HR) at 3 years

Combining A β & MMSE improves prediction

Low-cognition, high-Aβ MCI had highest risk (50% progressed in 3 years).


High-cognition, low-Aβ MCI had low risk of progressing

Conclusion: MCI-to-AD progression


A β PET (CL > 44) plus MMSE enhances risk stratification, aiding clinical trials & interventions.

The model informs personalized prediction of conversion risk for new patients

Risk Models: Blood biomarkers

ACKNOWLEDGEMENTS

AIBL would like to thank the study participants and their families

AIBL Study team:

David Ames	Jurgen Fripp	Hugo Leroux	Blaine Roberts	Mike Weinborn	
Alex Barac	Shaun Frost	Qiao-Xin Li	Jo Robertson	Rob Williams	
Mary Barnes	Sam Gardener	Yen Ying Lim	Mark Rodrigues	Michael	
Kevin Barnham	Simon Gibson	Florence Lim	Christopher Rowe	Woodward	
Pierrick Bourgeat	Rob Grenfell	Lucy Lim	Rebecca Rumble	Paul Yates	
Sveltana	Rodney Guzman	Kathy Lucas	Ian Saunders	Luz Fernanda Yevenes Ugarte	
Bozinovski (nee Pejoska)	Bronwyn Hall	Lucy Mackintosh	Greg Savage	George Zisis	
Belinda Brown	David Hanson	Ralph Martins	KaiKai Shen	000.80 100	
Samantha	Elise Harrison	Georgia Martins	Brendan Silbert		
Burnham	Jacqui Hayem	Paul Maruff	Harmid Sohrabi		
Lesley Cheng	Andy Hill	Colin Masters	Kevin Taddei		
Steven Collins	Eugene Hone	Simon McBride	Tania Taddei		
James Doecke	Maryam Hor	Tash Mitchell	Christine Thai		
Josie Domingo	Jill Hwang	Amanda Niu	Philip Thomas		
Vincent Dore	Yogi	Steve Pedrini	Brett Trounson		
Denise El-Sheikh	Kanagasingam	Kayla Perez	Regan Tyrell		
Kathryn Ellis	Neil Killeen	Kelly Pertile	Jacquie Uren		
Binosha Fernando	Fiona Lamb o	Tenielle Porter	Victor Villemagne	2	
Christopher Fowler	Nicola Lautenschlager Simon Laws	Stephanie Rainey Smith	r-Irene Volitakis Larry Ward		
		Malcolm Riley			

AIBL is a large collaborative study and a complete list of contributors can be found at <u>www.aibl.csiro.au</u>

THE CRC for Mental Health INSTITUTE OF NEUROSCIENCE & MENTAL HEALTH **Austin** Health EDITH COWAN McCusker **HEIMER'S** SEARCH Foundation CSIRO YULGILBAR The Yulgilbar Foundation Collaborators

Thank you

CSIRO - Health & Biosecurity

www.csiro.au

Built on AIBL Foundations

Australian Dementia Network REGISTRY. CLINICS. TRIALS.

OBJECTIVES

Establish Australia's first dementia clinical quality registry to track, benchmark, and report on the clinical care of people with dementia

Establish consistent best practice guidelines for dementia diagnosis and treatment

Facilitate development of effective therapies by screening patients suitable for clinical trials

CLINICAL QUALITY REGISTRY

as of May 2023

Collects data to benchmark clinical practice in the diagnosis, management and care of people with dementia or mild cognitive impairment

Incorporates voice of people living with dementia and their care partners

Drives improvement

Measures the impact of new treatments for Alzheimer's disease

MONASH

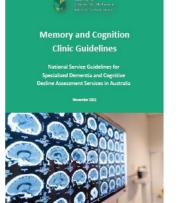
Australian Dementia Network Registry First Annual Report 2020-2021

> Australian Dementia Network

MEMORY CLINICS

Harmonises diagnostic and post-diagnostic support pathways so Australians have access to high-quality dementia assessments.

Published Australia's first National Service Guidelines for MC Clinics


Nationwide cognitive interventions and risk assessment

Pioneered management impact study on

Improved diagnosis via training, harmonised assessments and neuropsychological testing tool

Established leading presence in Australian health and research community

eads the Australia Dementia Research Forum

implementing blood-based biomarkers into Clinics

Home to Early Mid-Career Researchers and Young Onset Dementia Special Interest Groups

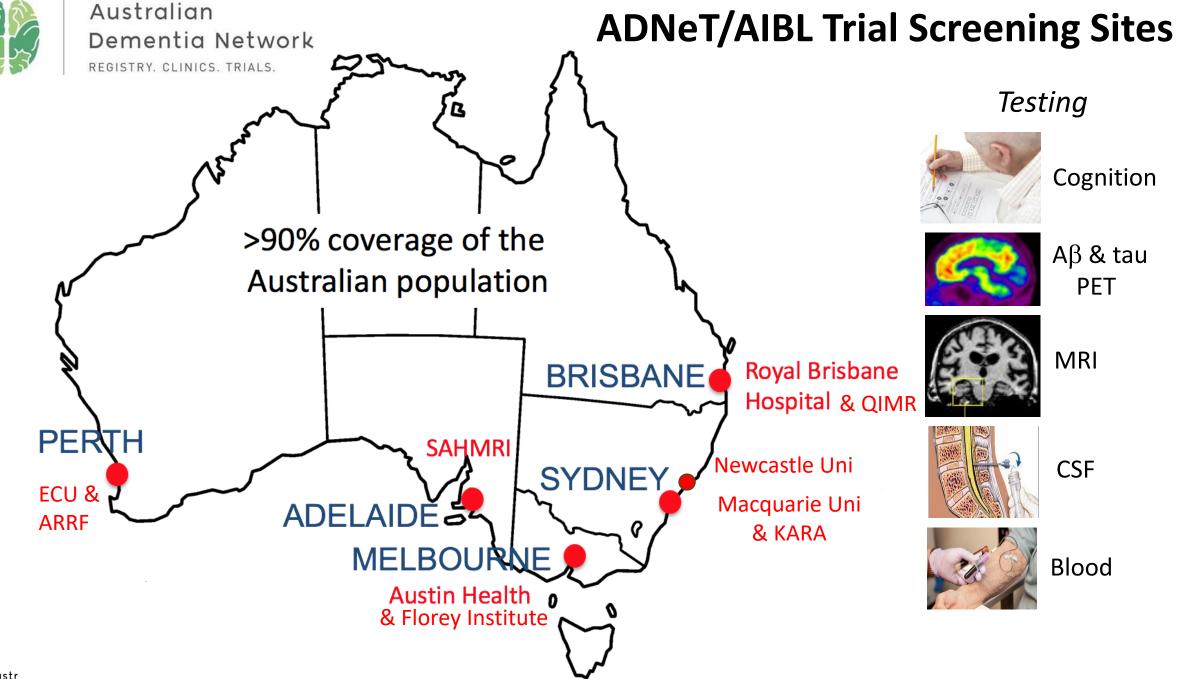
SCREENING AND TRIALS

ADNeT Screening centres established to shorten trial recruitment times and increase access to emerging therapies.

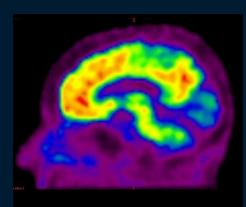
Facilitated international clinical trials in Australia (Eisai **CLARITY** and AHEAD 3-45 studies, Biogen EMERGE trial, Novo Nordisk EVOLVE trial, Roche trial)

Recruited 3,439 registrants into ADNeT Volunteer Portal

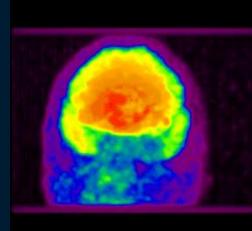
Completed 1,158 screenings for the trial ready cohort


Secured significant grant funding from industry partners

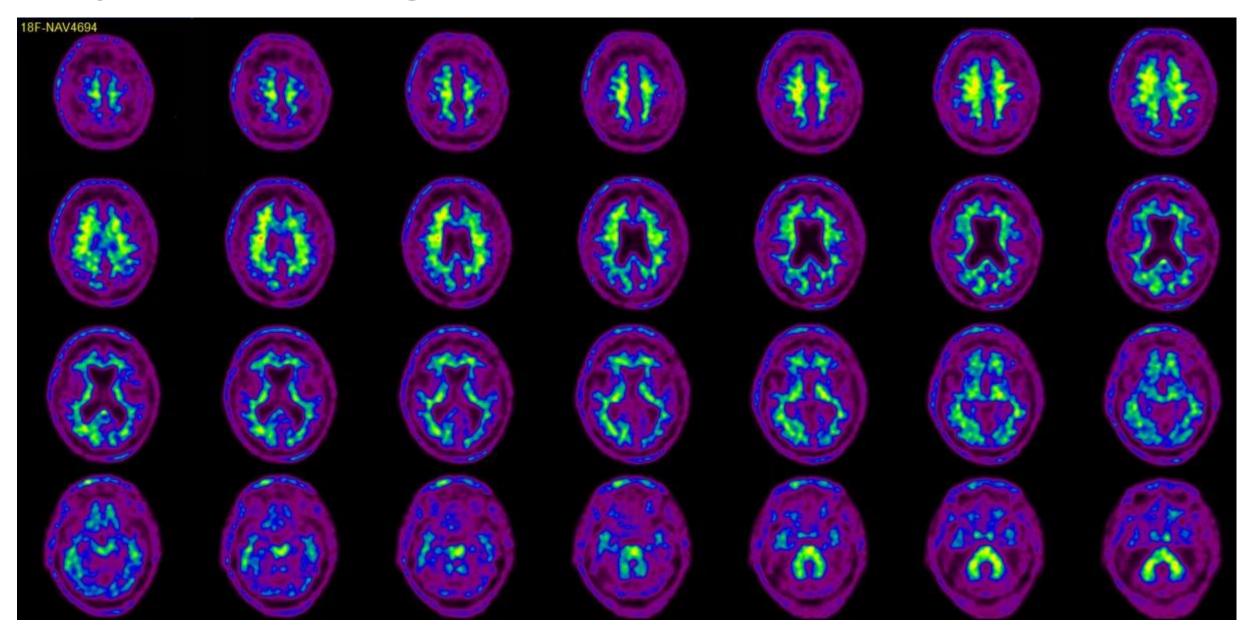
Introduced blood pTau and genetic testing prescreening for early Alzheimer detection

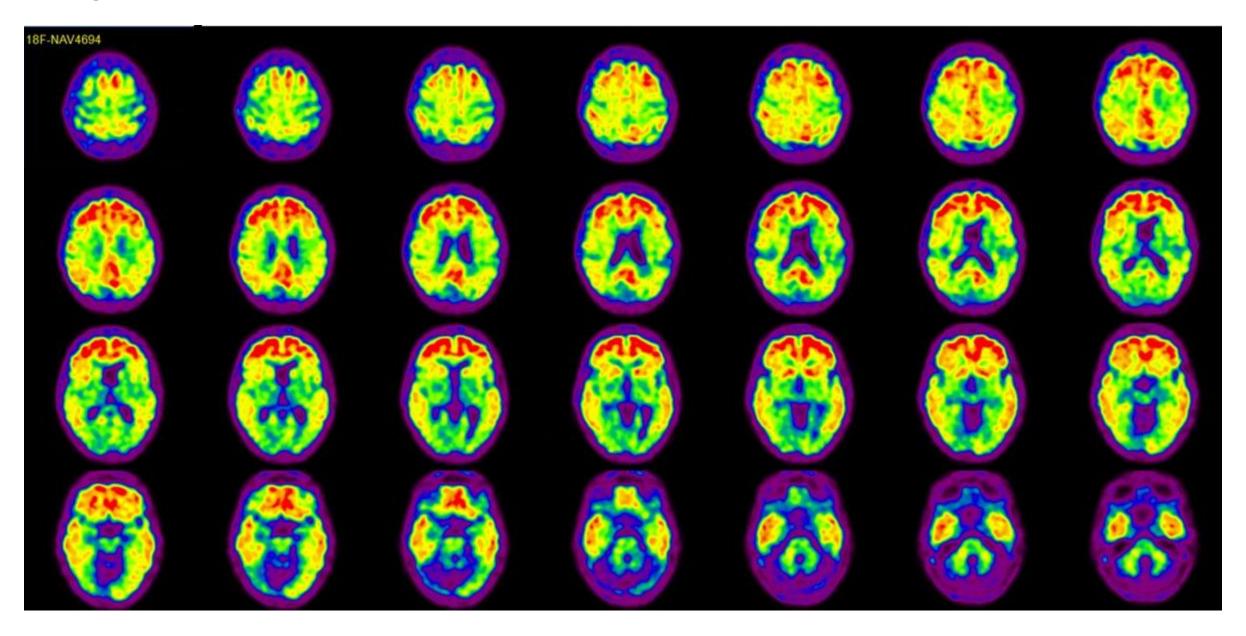


REDISTRT. CLINICS. IRIALS.


2004: Beta-amyloid PET Begins

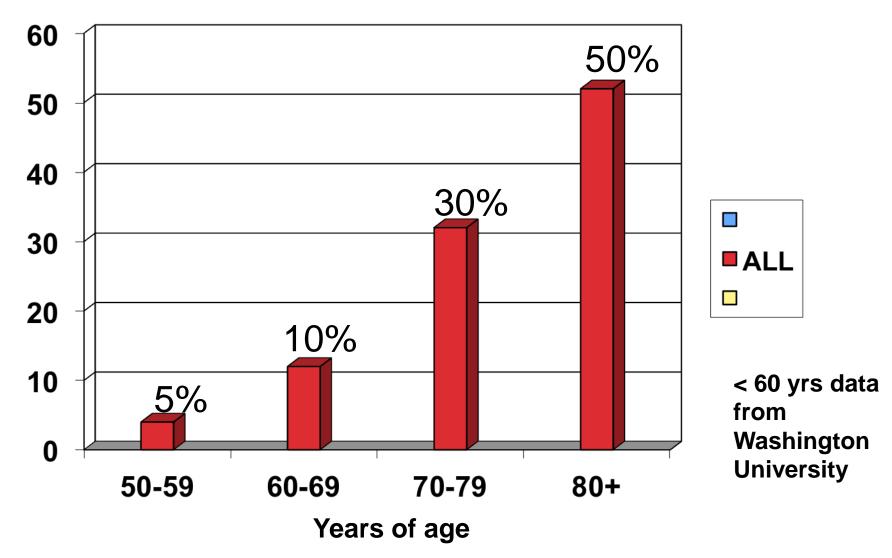
¹¹C-PiB


Inventors: Chet Mathis William Klunk University of Pittsburgh

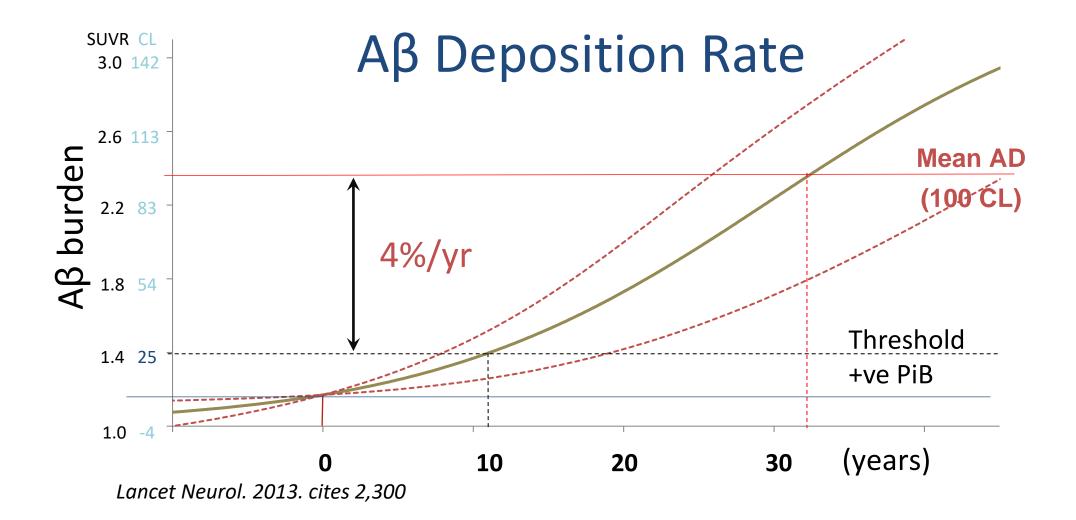

0 deg

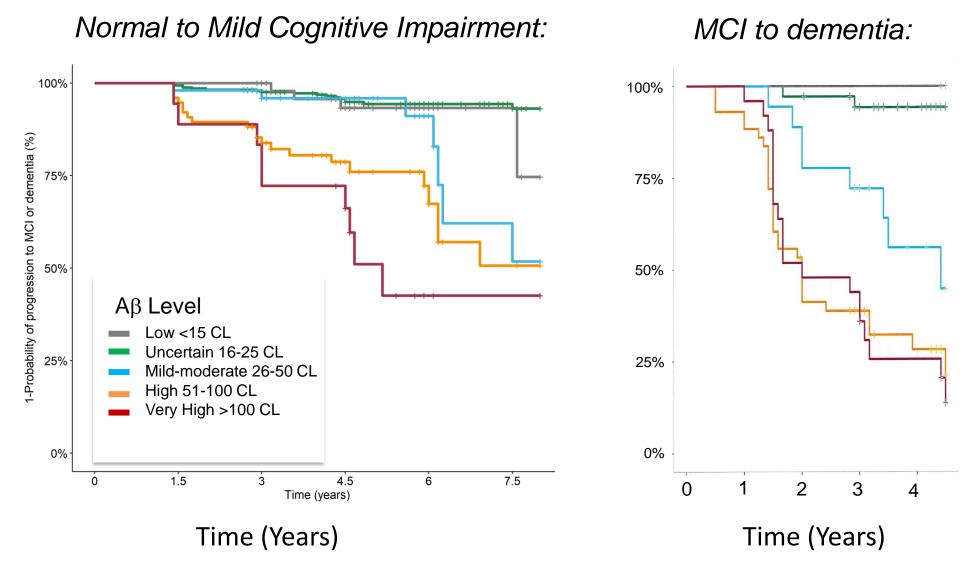
Alzheimer's Disease

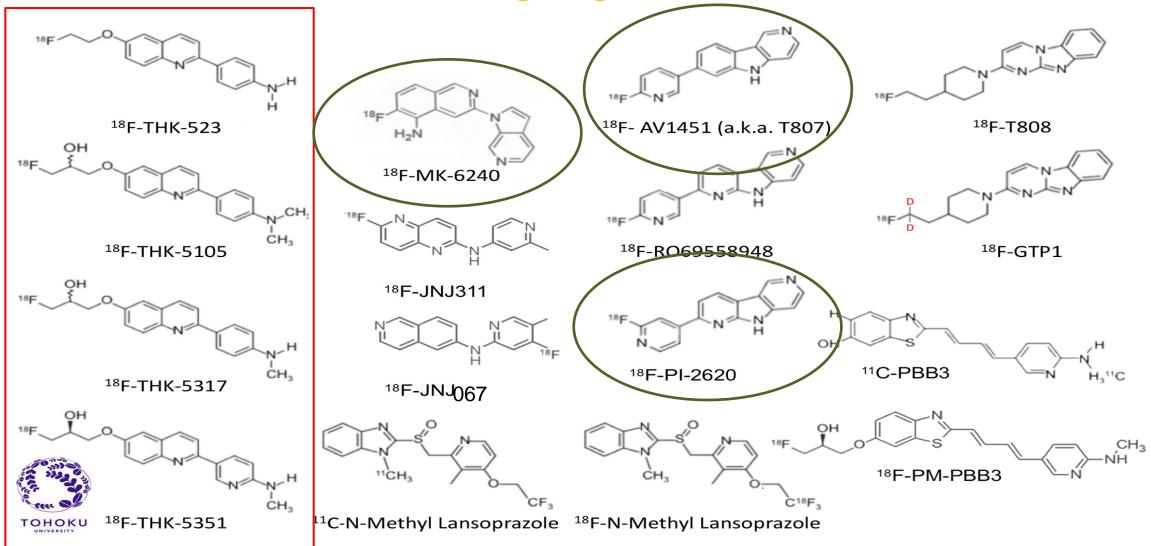
Amyloid scan : Negative


Amyloid scan : Positive

% Healthy Population Amyloid PET +ve

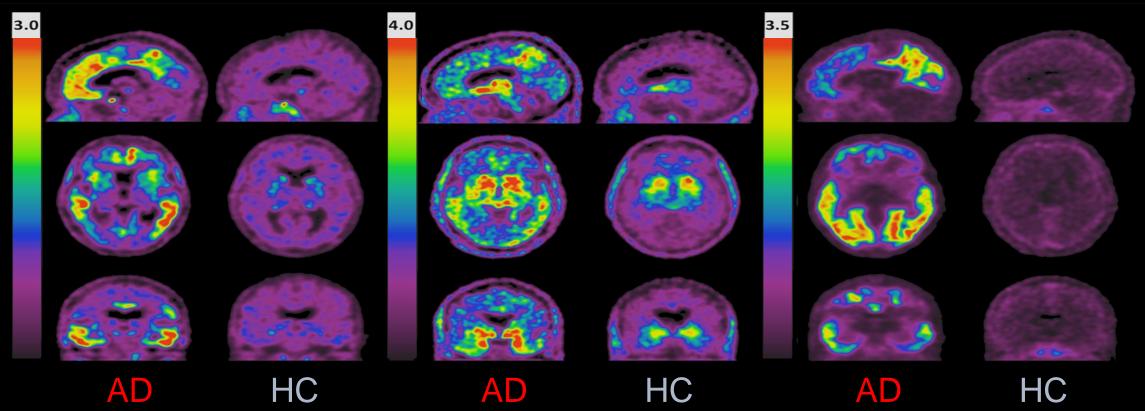



Rowe CC, et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging, Neurobiology of Aging 2010. Citations 1,127

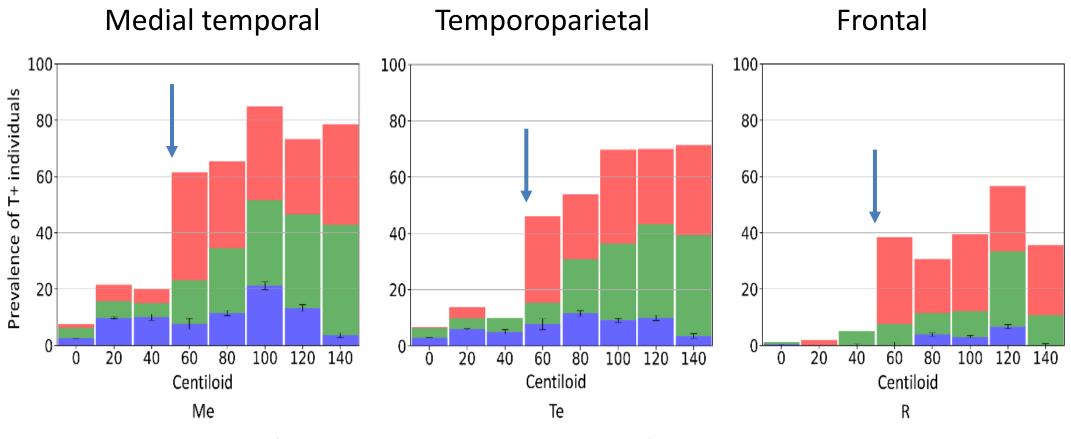

Aβ level vs disease progression

van der Kall LM, ... Rowe CC. Association of β-Amyloid level, clinical progression and longitudinal cognitive change in normal older individuals. Neurology 2021

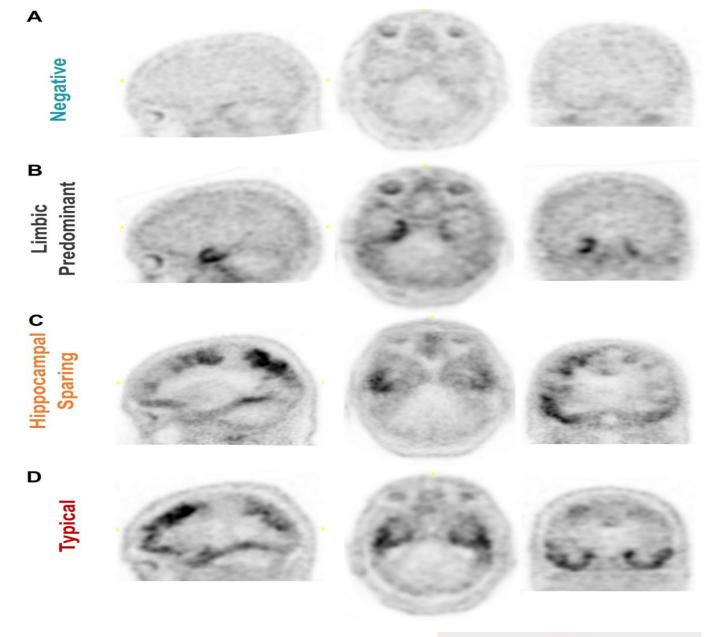
Selective tau imaging tracers



Three Tau Tracers - Examples

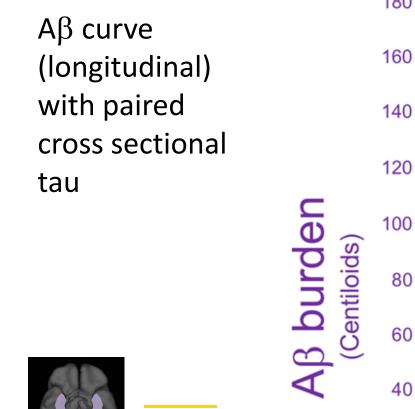

¹⁸F-AV1451

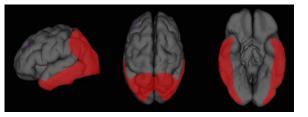
¹⁸F-THK5351

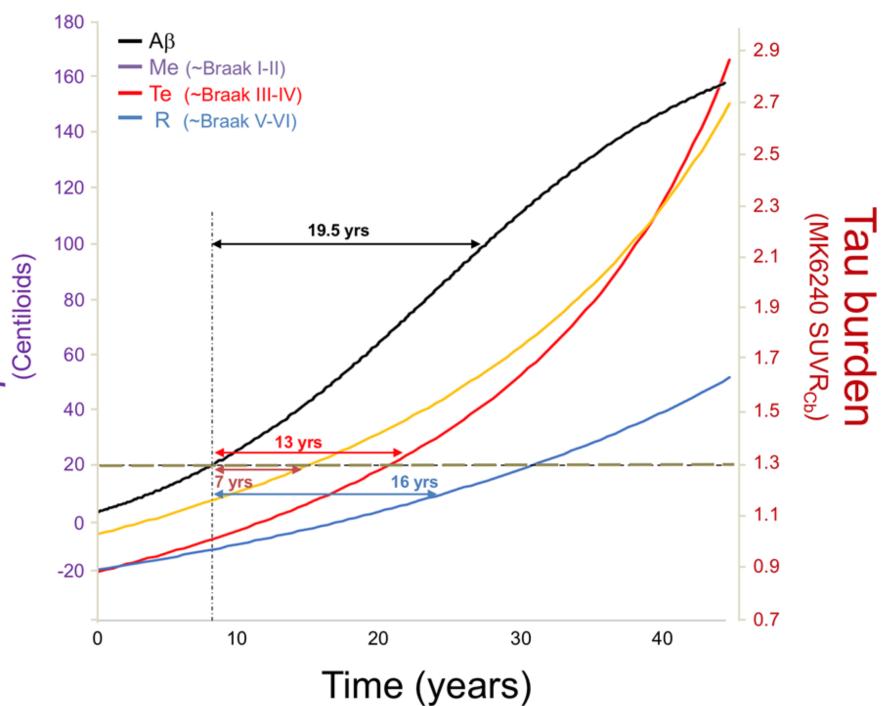

¹⁸F-MK6240

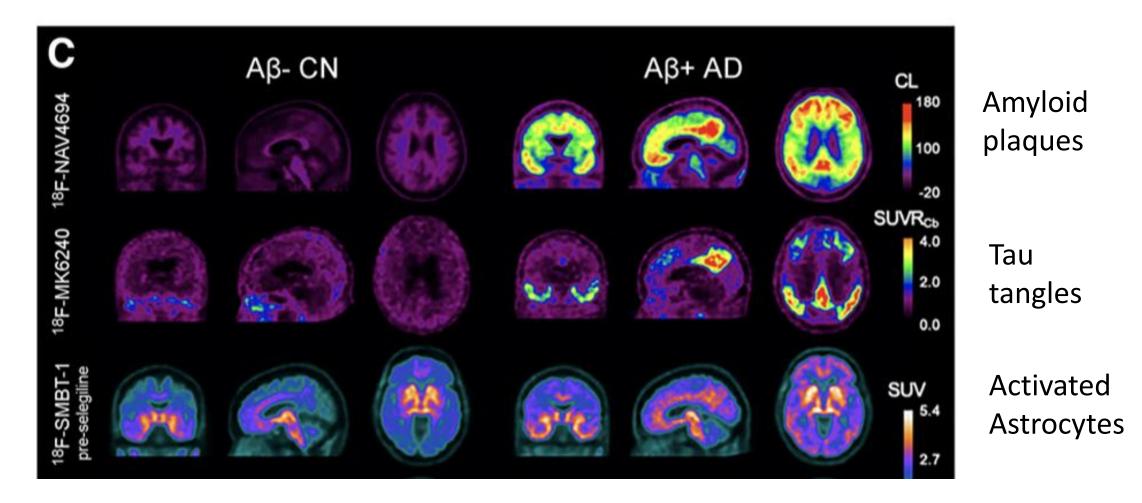
Amyloid Cascade Hypothesis for AD confirmed by PET: Tau PET usually negative below 50 CL of amyloid N=475 MK6240.

Blue – CN; Green – MCI; Red - Dementia




Patterns of MK-6240


A is an Older Control, B-D are MCI/early AD



PET for amyloid plaques, tau tangles and now also neuroinflammation research in AIBL

ImmunoPrecipitation Mass Spectroscopy

LETTER

doi:10.1038/nature25456

High performance plasma amyloid – β biomarkers for Alzheimer's disease

Akinori Nakamura¹, Naoki Kaneko², Victor L. Villemagne^{3,4}, Takashi Kato^{1,5}, James Doecke⁶, Vincent Doré^{3,6}, Chris Fowler⁴, Qiao-Xin Li⁴, Ralph Martins⁷, Christopher Rowe^{3,4}, Taisuke Tomita⁸, Katsumi Matsuzaki⁹, Kenji Ishii¹⁰, Kazunari Ishii¹¹, Yutaka Arahata⁵, Shinichi Iwamoto², Kengo Ito^{1,5}, Koichi Tanaka², Colin L. Masters⁴ & Katsuhiko Yanagisawa¹

NATURE 2018 doi:10.1038/nature25456 (1,555 citations)

Phospho-tau Blood Biomarkers

Talepe et al. Molecular Neuroa DOI 10.1186/s13024-017-0206-8

Molecular Neurodegeneration

RESEARCH ARTICLE

Open Access

CrossMark Quantification of plasma phosphorylated tau to use as a biomarker for brain 2017 Alzheimer pathology: pilot case-control studies including patients with Alzheimer's disease and down syndrome

Harutsugu Tatebe^{1,2}, Takashi Kasai¹, Takuma Ohmichi¹, Yusuke Kishi³, Tomo Masaki Kondo¹, David Allsop⁵ and Takahiko Tokuda^{1,6*}

alzheimer's R Alzheimer's & Dementia association' THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

Blood-based biomarkers might improve the diagnostic work-

Featured Article

Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau- and amyloid-positron emission tomography

Michelle M. Mielke 🔀 Clinton E. Hagen, Jing Xu, Xiyun Chai, Prashanthi Vemuri, Val J. Lowe, David C. Airey , David S. Knopman, Rosebud O. Roberts, Mary M. Machulda, Clifford R. Jack Jr., Ronald C. Petersen, Jeffrey L. Dage, ... See fewer authors A

JAMA | Original Investigation

Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders 2020

Sebastian Palmqvist, MD, PhD; Shorena Janelidze, PhD; Yakeel T. Quiroz, PhD; Henrik Zetterberg, MD, PhD; Francisco Lopera, MD; Erik Stomrud, MD, PhD; Yi Su, PhD; Yinghua Chen, MSc; Geidy E. Serrano, PhD; Antoine Leuzy, PhD; Niklas Mattsson-Carlgren, MD, PhD; Olof Strandberg, PhD; Ruben Smith, MD, PhD; Andres Villegas, MD; Diego Sepulveda-Falla, MD; Xiyun Chai, MD; Nicholas K. Proctor, BS; Thomas G. Beach, MD, PhD; Kaj Blennow, MD, PhD; Jeffrey L. Dage, PhD; Eric M. Reiman, MD; Oskar Hansson, MD, PhD

Title	Yea▼↑	First Author	Last Author	Journal	Volume
Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology; pilot case- control studies including patients with Alzheimer's disease and down syndrome	2017	Tatebe	Tokuda	Mol Neurodegener	12(1)
Plasma phospho-taul81 increases with Alzheimer's disease clinical severity and is associated with tau- and amyloid-positron emission tomography		Mielke	Dage	Alzheimers & Dem	14(8)
Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer's disease		Palmqvist	Hansson	EMBO Mol Med	11(12)
Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia		Janelidze	Hansson	Nat Med	26(3)
Diagnostic value of plasma phosphorylated tau181 in Alzheimer's disease and frontotemporal lobar degeneration		Thijssen	Boxer	Nat Med	26(3)
Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts		Karikari	Blennow	Lancet Neurol	19(5)
Discriminative Accuracy of Plasma Phosphotau217 for Alzheimer Disease vs Other Neurodegenerative Discriders		Palmqvist	Hansson	JAMA	324(8)
Plasma Phospho-Tau Identifies Alzheimer's Co-Pathology in Patients with Lewy Body Disease		Hall	Hansson	Mov Disord	Epub
Associations of Plasma Phospho-Tau217 Levels With Tau Positron Emission Tomography in Early Alzheimer Disease		Janelidze	Hansson	JAMA Neurol	78(2)
Longitudinal plasma p-tau217 is increased in early stages of Alzheimer's disease		Mattsson Carlgren	Hansson	Brain	143(11)
Aβ deposition is associated with increases in soluble and phosphorylated tau that precede a positive Tau PET in Alzheimer's disease		Mattsson Carlgren	Hansson	Sci Adv	6(16)
Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer's disease		Janelidze	Hansson	Nat Commun	11(1)
Plasma ptau181 accurately predicts Alzheimer's disease pathology at least 8 years prior to post-mortem and improves the dinical characterisation of cognitive dedine		Lantero Rodriguez	Ashton	Acta Neuropathol	140 (3)
Plasma phospho-tau181 in presymptomatic and symptomatic familial Alzheimer's disease: a longitudinal cohort study		O'Connor	Fax	Mol Psychiatry	Epub
Diagnostic and prognostic value of serum NR and p-Tau 181 in frontotemporal lobar degeneration		Benussi	Borroni	Veurol Neurosurg Psychiat	91(9)
Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer's disease	2020	Barthelemy	Bateman	J Exp Med	217(11)
Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer's disease and PET amyloid positive patient identification		Barthelemy	Bateman	Alzheimers Res Ther	12(1)
A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer's disease		Barthelemy	Bateman	Nat Med	26(3)
Sleep Deprivation Affects Tau Phosphorylation in Human Cerebrospinal Fluid		Barthelemy	Lucey	Ann Neurol	87(5)
Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations		Cullen	Hansson	Nature Aging	1
Soluble P-tau217 reects amyloid and tau pathology and mediates the association of amyloid with tau	2021	Mattsson Carlgren	Hansson	<u>ResearchSquare</u>	
Plasma biomarkers of Alzheimer's disease predict cognitive decline and could improve clinical trials in the cognitively unimpaired elderly	2021	Cullen	Hansson	<u>medRxiv</u>	
				ResearchSquare	
The diagnostic and prognostic capabilities of plasma biomarkers in Alzheimer's disease	2021	Simren	Ashton	Alzheimers & Dem	Epub
Plasma p-tau231: a new biomarker for incipient Alzheimer's disease pathology	2021 2021	Ashton	Blennow	Acta Neuropathol	Epub
Population-based blood screening for predinical Alzheimer's disease in a British birth oxhort at age 70 Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease		Keshavan Moscoso	Ashton Scholl	Brain JAMA Neurol	Epub Epub
Association between polygenic risk score of Alzheimer's disease and plasma phosphorylated tau in individuals from the Alzheimer's Disease Neuroimaging Initiative		Zettergren	Blennow	Alzheimers Res Ther	13(1)
Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum	2021	Moscoso	Scholl	Brain	144(1)
Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer's Disease Neuroimaging Initiative		Karikari	Zetterberg	Mol Psychiatry	26(2)
Plasma ptau181, ptau217, and other blood-based Alzbeimer's disease biomarkers in a multi-ethnic, community study		Brickman	Mayeux	Alzheimers Dement	Epub
Prediction of future Alzheimer's disease dementia using plasma phosphotau combined with other accessible measures		Palmqvist	Hansson	Nat Med	Epub
			-		

up of AD

Recent AIBL/ADNeT Publications on Blood-Based Biomarkers for Alzheimer's Disease

Detection and staging of Alzheimer's disease by plasma pTau217 on a high throughput platform eBioMedicine, November 2024

Plasma p217+tau vs NAV4694 amyloid and MK6240 tau PET across the Alzheimer continuum. Alzheimer's and Dementia, DADM 2022

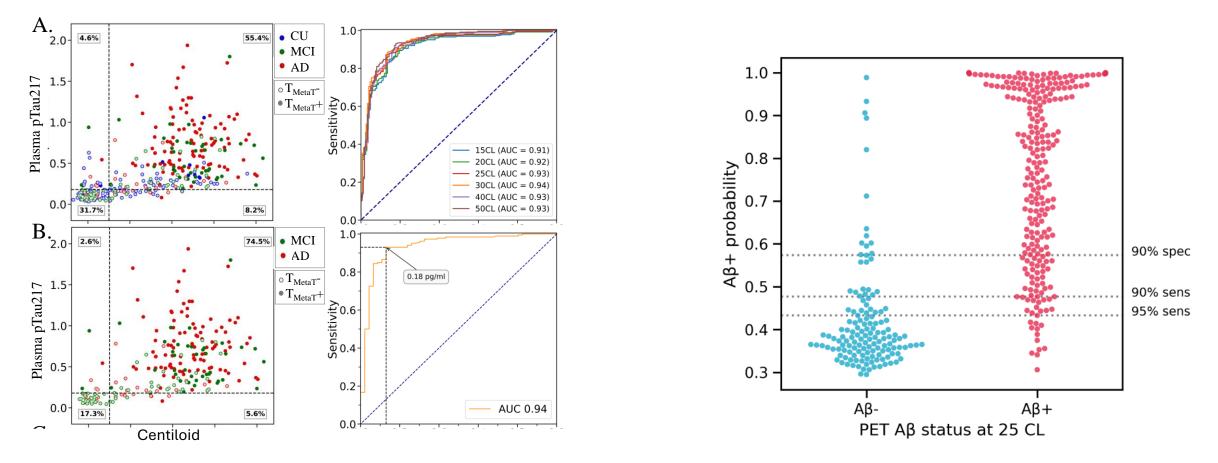
Two-year prognostic utility of plasma p217+tau across the Alzheimer's continuum. J Prevention of Alzheimer's Disease, 2023

<u>Alzheimer's Disease biological PET staging using plasma p217+tau.</u> *Communications Medicine, 2024 under review*

<u>Head-to-head comparison of plasma biomarkers across the AD continuum in an Australian population</u> *Alzheimer's Association, June 2023*

<u>Plasma biomarkers in chronic single moderate-severe traumatic brain injury</u> *Brain- Oxford Academic, November 2024*

Blood-Based Biomarkers in the News



High media interest:
Page one Herald Sun,
4 radio and 4 TV interviews
in response to release of
latest AIBL/ADNeT blood
biomarker paper.

Seven News, 6pm, Metro Melbourne & syndicated nationally November 1, 2024

Fujirebio Lumipulse plasma pTau217 vs Amyloid PET

Single threshold gave 87% accuracy.

Two-threshold approach set for 95% sensitivity and 90% specificity, give **92% accuracy** excluding the 18% indeterminant. In MCI/mild dementia PPV was >95%.

Accurate Detection and Staging of Alzheimer's Disease by Plasma pTau217 on a High Throughput Immunoassay Platform. Feizpour A,... Rowe CC. <u>eBioMed 2024</u>

Throughput

- Simoa 35 tests per 3 hours. <u>Research</u> installations world-wide.
- Fujirebio Lumipulse G 120 tests per hour international <u>clinical</u> installation base. FDA approved CSF AD biomarkers.
- C_2N warehouse full of mass spec machines only in St. Louis.

Lumipulse G 1200

AD Blood-Based Biomarkers

Project Rationale

- Address need for early diagnosis for improved patient health outcomes
- Aligns with NDAP Obj 3: Improving dementia diagnosis and post diagnostic care
- Accurate AD diagnosis relies on cerebrospinal fluid (CSF) testing or amyloid PET scans
- CSF collection requires lumbar puncture and amyloid PET scans are costly and not widely accessible

Blood-Based Biomarkers

- Accuracy
 - pTau217 high correlation with AD pathology seen on PET scans
 - 92% accuracy (compared to 75% with current practice specialist diagnosis)
- Affordability
 - Cost-effective (~\$250)
 - compared to \$1,500 existing blood test available to Australians and processed in the US
 - compared to CSF (~\$650) and amyloid PET (~\$2000)
- Accessibility
 - GP or specialist orders test, bloods collected at local pathology, assays run in Australia

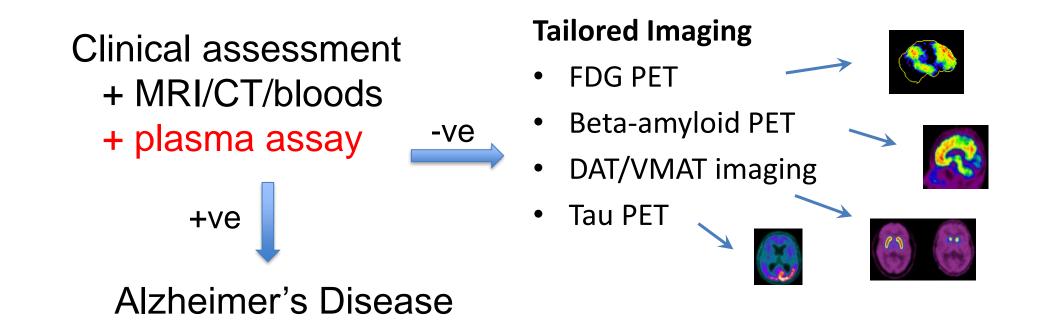
AIBL/ADNeT goal is to create world-first, wide access to a Blood Test for AD

National blood-based biomarker testing infrastructure

- Equip and operate a high capacity, national demonstration site that will give Australians
 immediate access to this "breakthrough" plasma pTau217 diagnostic test while collecting data on
 appropriate use and diagnostic and management impact.
- Efficiently utilise an existing fully NATA accredited testing laboratory at the Florey Institute

KPIs

- Up to 50,000 Australians with possible early dementia tested (including CALD and First Nations) in the first 3 years
- Improved GP and specialist confidence in AD diagnosis
- Reduced delay in diagnosis and earlier referral for specialist treatment


Capacity Building & Blood Test Diagnosis in Primary Care

National GP education in Alzheimer's Prevention and Early Diagnosis

- Delivery of the validated and scalable ADNeT online GP education program
- Incentivise and empower GPs as education program is delivered in partnership with accurate diagnostic blood test for AD
- Provide guidelines to make this diagnosis with accuracy and confidence
- Foster communities of practice and GP dementia leaders
- Provide advice on evidence-based drug and non-drug MCI and dementia interventions (cognitive training, exercise, OT)

Future Diagnostic Practice

Lumipulse pTau217 had 97% PPV in MCI/mild AD